Math, asked by RedBluePink, 3 months ago

The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.​

Answers

Answered by Anonymous
128

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{Given:}}}}}}}\end{gathered}

  • ● The measures of two adjacent angles of a parallelogram are in the ratio 3:2.

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{To Find:}}}}}}}\end{gathered}

  • ● The measure of each of the angles of the parallelogram.

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{Solution:}}}}}}}\end{gathered}

 \dag \: \underline{\frak{\red{Let \:  the \: angles,}}}

  • ● 3x
  • ● 2x

 \dag \:  \underline \frak \red{As \:  we \:  know \:  that}

  • The sum of any two adjacent angles of a parallelogram is equal to 180°.

 \dag \: {\underline{\frak{\red{According \:  to \:  the \:  question}}}}

  : \implies\sf{3x + 2x}= \bf{{180}^{\circ}}

  : \implies\sf{5x}= \bf{{180}^{\circ}}

: \implies\sf{x}= \bf{\dfrac{180}{5}}

: \implies\sf{x}= \bf{\cancel{\dfrac{180}{5}}}

: \implies\sf{x}= \bf{{36}^{\circ}}

 \dag\underline{\boxed{\rm{\pink{{x}={36}^{\circ}}}}}

 \dag \: \underline{\frak{\red{Angles,}}}

  • ● 3×36 = 108⁰
  • ● 2×36 = 72⁰

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{Verification:}}}}}}}\end{gathered}

 \dag \: \underline{\frak{\red{Checking \:  our  \: answer,}}}

  : \implies\sf{3x + 2x}= \bf{{180}^{\circ}}

  • Substituting the angles

  : \implies\sf{{108}^{\circ}  +  {72}^{\circ} }= \bf{{180}^{\circ}}

  : \implies\sf{{180}^{\circ}}= \bf{{180}^{\circ}}

\dag\underline{\boxed{\rm{\pink{LHS=RHS }}}}

  • ● Hence Verified ꪜ
  • ● Henceforth,The our answer is correct..ꪜ

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\purple{Learn \: More:}}}}}}}\end{gathered}

Adjacent Angles:

Any two angles that share

  • ● a common ray or side
  • ● a common vertex
  • ● and whose interiors do not overlap

are called adjacent angles.

Answered by AbhinavRocks10
2

Answer:

\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Question:-}}\\\\\end{gathered}\end{gathered}\end{gathered}

5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}\end{gathered}\end{gathered}

The measures of two adjacent angles of a parallelogram are in the ratio 3:2.

\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}\end{gathered}\end{gathered}

  • Find the measure of each of the angles of the parallelogram.

\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}\end{gathered}\end{gathered}

\boxed{ \sf \orange{ we \: have \: ardjacent \: angles \: of \: a \: parallelogram \: = 180}}

\begin{gathered}\begin{gathered}\begin{gathered}\\ \sf \underline{ \green{putting \: all \: values : }}\end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\: \\ \sf \to \: 3x + 2 x= 180\: \\ \\ \sf \to \: \: \: \: \: \ : \: \: \: \: \:5x = 180 \\ \\ \: \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \frac{180}{5} \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \cancel{ \frac{180} {5} } \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \purple{x = 36}\\\\end{gathered}\end {gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\sf \to \: 3x \\ \sf \to \: 3 \times 36 \\ \sf \to \red{108 }\\ \\ \\ \sf \to \: 2x \\ \sf \to \: 2 \times 36 \\ \sf \to \orange{72} \\\end{gathered}\end{gathered} \end{gathered}

Similar questions