Math, asked by Mansii554, 2 months ago

The median of the distribution given below 14.4 find the value of x and y if the total frequency is 20

Answers

Answered by DazzlingDiamond
0

Answer:

Solution :

Class Interval              Frequency                       Cumulative Frequency

0-6                                  4                                       4

6-12                                X                                      4+X

12-18                             5                                        9+X

18-24                             Y                                      9+X+Y

24-30                             1                                       10+x+Y

---------------------------------------------------------------------------------

Total                              20          

∴X+Y+10=20

⇒X+Y=20-10

⇒X+Y=10 -----------

Given Median =14.4

So Median Class is 12-18      

12-18                             5                                        9+X

By using formula:

Median =L+[N/2 -F] x (c/f)

where ,

L= Lower limit of median class= 12

N=20⇒N/2=20/2=10

F=Cf=Cumulative frequency of class before the median class=4+X

f=frequency of median class=5  

Class interval =c=6

∴ 14.4=12+[10-[4+X)]6/5

⇒14.4-12=[10-4-X]6/5

⇒2.4=([6-X]6/5

⇒5x2.4=6[6-X]

⇒12=36-6x

⇒12-36=-6X

⇒-24= - 6X

⇒X=24/6 = 4 ----------(2)

Now, substitute the value of X in equation 1 we get the value of Y

X+Y=10

4+Y=10

Y=10-4=6

∴X=4 and Y=6

Similar questions