The median of the following data is 525. Find the missing frequency, if it is given that there are 100 observation in the data:
Class interval
0−100
100−200
200−300
300−400
400−500
Frequency
2
5
f1
12
17
Class interval
500−600
600−700
700−800
800−900
900−1000
Frequency
20
f2
9
7
4
Answers
SOLUTION :
CUMULATIVE FREQUENCY TABLE is in the attachment.
Given : Median = 525 , which belongs to the class 500 - 600 . So the Median class is 500 - 600
Given : n(Σfi) = 100
Here, n = 100
n/2 = 50
From the table , l = 500, f = 20, cf = (36 + f1) , h = 100
MEDIAN = l + [(n/2 - cf )/f ] ×h
525 = 500 +[50- (36+f1)/20] ×100
525 - 500 = [(50 - 36 - f1)/20] × 100
25 = [ (14 - f1)/20] × 100
25 × 20 = (14 - f1) × 100
500 = 1400 - 100f1
100 f1 = 1400 - 500
100f1 = 900
f1 = 900/100
f1 = 9
Given : Σfi = 100
76 + f1 + f2 = 100
f1 + f2 = 100 - 76
f1 + f2 = 24
f2 = 24 - f1
f2 = 24 - 9 [f1 = 9]
f2 = 15
Hence, the missing frequencies be f1 = 9 and f2 = 15.
★★ MEDIAN = l + [(n/2 - cf )/f ] ×h
Where,
l = lower limit of the median class
n = number of observations
cf = cumulative frequency of class interval preceding the median class
f = frequency of median class
h = class size
HOPE THIS ANSWER WILL HELP YOU…