Math, asked by adam3578, 9 months ago

The median of the following data is 525 find the value of x ,and y if the total frequency is 100

Answers

Answered by bavachimaruti
12

Answer:

that is the answer pls follow me and make this answer brainlist and

Attachments:
Answered by Anonymous
42

 \: \rm\large{\underline{\underline\color{darkblue}{Solution:-}}}

\begin{gathered}\begin{gathered}{\large \qquad \boxed{\boxed{\begin{array}{cc}  \bf  \dashrightarrow  \red{\:Given \: n = 100} \\  \\  \rm \: So, \: 76 + x + y = 100 \: i.e. \: x + y = 24 \: (1) \\  \\  \  \bf \: The \: median \: is \: 525 \: which \: lies \: in \: the \: class \: 500 - 600 \\  \\  \rm So, \\  \\  \rm l = 500, \: f = 20 ,\:  \: cf = 36 + x \:  \: h = 100 \\  \\  \bf \dashrightarrow \red{ Using \: formula} \\  \\  \rm \: Median = l +  \frac{ (\frac{n}{2} - cf) }{f} \times h \\  \\  \rm \mapsto \: 525 = 500 +  \frac{50 - 36 - x}{20}  \times 100 \\  \\  \rm \mapsto \: 525 - 500 = (14 - x) \times 5 \\  \\  \rm \mapsto  \: 25 = 70 - 5x \\  \\  \rm \mapsto  \: 5x = 70 - 25 = 45 \\  \\  \rm \mapsto \: x = 9 \\  \\  \bf \dashrightarrow \: Therefore, \: from(1), \: we \: get \: 9 + y = 24 \\  \\  \rm \hookrightarrow \fbox \red{y = 15}\end{array}}}}\end{gathered}\end{gathered}

Note :

  • The median of grouped data with unequal class sizes can also be calculated.

@Shivam

Attachments:
Similar questions