Math, asked by angela7072, 1 year ago

The middle digit of a number between 100 and 1000 is zero and the sum of other digit is 13.if the digit. Are reversed,the no.so formed exceed the original no.by 495.find the no.?

Answers

Answered by Avengers00
15
\underline{\underline{\huge{\textbf{Solution:}}}}

Given,
\underline{\textit{Statement-1:}}
The middle digit of a number between 100 and 1000 is zero.

\underline{\textit{Statement-2:}}
Sum of the Digits of the Number is 13

\underline{\textit{Statement-3:}}
If the digits are reversed, the number so formed exceeds the original Number by 495.

\underline{\large{\textsf{Step-1:}}}
Rewrite Statement-1

The Required No. lies in between 100 and 1000
\implies \sf \textsf{It is a 3-digit Number}

Middle digit of a three digit Number is it's Ten's place Digit

\implies \sf \textsf{Ten's digit of 3-digit Number= 0}

\underline{\large{\textsf{Step-2:}}}
Assume the other digits of 3-digit No. as variable

Let Unit's digit of the 3- digit Number be x
Hundred's digit of the 3- digit Number be y
Ten's digit of the 3-digit Number = 0(Given)

\underline{\large{\textsf{Step-3:}}}
Rewrite Statement-2

\implies \sf x+0+y= 13

\implies \sf x+y= 13 ————[1]

\underline{\large{\textsf{Step-4:}}}
Express any of the digits, Unit's digit or Hundred's digit, in terms of other

\implies \sf y= 13-x

\underline{\large{\textsf{Step-5:}}}
Express the Number in terms of digits.

A Number is equal to sum of product of weight of the digit at each place and Face value at that place.

\textsf{3-digit Number = 1000(Hundred's digit)+10(Ten's digit)+1(Unit's digit)}

By Substituting,
\implies \sf 3-digit Number = 1000(y)+10(0)+1(x)

\implies \sf 3-digit\: Number = 1000y+x————[2]

\underline{\large{\textsf{Step-6:}}}
Find the Reversed 3-digit Number

If the digits of 3-digits number are reversed,
The Ten's digit remains same, but Unit's digit and Hundred's digit are interchanged.

Unit's Digit of Reversed 3-digit Number = Hundred's Digit of 3-digit Number

Ten's digit of Reversed 3-digit Number = 0

Reversed 3-digit Number = 1000x+0+y

\implies \sf Reversed 3-digit\: Number = 1000y+x ————[3]

\underline{\large{\textsf{Step-7:}}}
Rewrite Statement-3

Reversed 3-digit No. = Original 3-digit No. + 495

\underline{\large{\textsf{Step-8:}}}
Substituting [2] & [3]

\implies 100y+x = (100x+y)+495

\implies 99y-99x = 495

\implies 99(y-x) = 495

\implies y-x = 5 ————[4]

\underline{\large{\textsf{Step-9:}}}
Solve equations [1] & [4] to obtain the value of
unknown variables

Do [1]+[4]
\: \: x+y = 13
-x+y = 5
———————
2y = 18
\implies y = 9

Substituting y in [1]

x + 9 = 13
x = 13 - 9
\implies x = 4

\underline{\large{\textsf{Step-10:}}}
Express the required Number using the variables.

\therefore
\bigstar \textsf{Required 3-digit Number = \underline{\textbf{904}}}

mahalakshmi67: you are a brilliant
Avengers00: thanks (:
Similar questions