the minimum value of 27 Cosx + 81 Sinx is ?
Answers
Answered by
1
Answer:
-27√10
Step-by-step explanation:
To find minimum value of aCosx + bSinx
=Multiply and divide by √a² + b²
we get
√a² + b²(a/√a² + b²Cosx + b/√a² + b²Sinx)
Let us assume sin ∅ = a/√a² + b²
cos ∅ = b/√a² + b²
so we get
√a² + b²(sin ∅Cosx + cos ∅Sinx)
=√a² + b² Sin(∅ + x)
But we now, minimum value fo Sin is -1
Hence Minimum value of aCosx + bSinx is
-√a² + b².
Hence, minimum value of 27 Cosx + 81Sinx
= -√27²+81²
=-√27²(1+9)
=-27√10.
Similar questions