Math, asked by pranavkakkar120, 8 months ago

The modulus of (1+2i)(3-4i) / (4+3i)(2-3i) is _____

Answers

Answered by RADJKRISHNA
18

hi friend,

here is your answer

please follow me

Answer:

√5/13

Step-by-step explanation:

(1+2i)(3-4i)/(4+3i)(2-3i)

= 11+2i / 17-6i

conjugate the denominator

11+2i /17-6i × 17+6i/17+6i

= 175+100i/325

= 7+4i/13

therefore,

7/13 + 4/13i

modulus = √x^2 + y^2

= √(7/13)^2 + (4/13)^2

= √5/13

hope it helps

if helps please follow me

Answered by pulakmath007
2

SOLUTION

TO DETERMINE

The modulus of

\displaystyle \sf{   \frac{(1 + 2i)(3 - 4i)}{(4 + 3i)(2 - 3i)}  }

EVALUATION

Here the given complex number is

\displaystyle \sf{   \frac{(1 + 2i)(3 - 4i)}{(4 + 3i)(2 - 3i)}  }

The required modulus

\displaystyle \sf{  =  \bigg|   \frac{(1 + 2i)(3 - 4i)}{(4 + 3i)(2 - 3i)} \bigg|   }

\displaystyle \sf{  =   \frac{ | 1 + 2i | \: | 3 - 4i| }{ | 4 + 3i | \: | 2 - 3i | } }

\displaystyle \sf{  =    \frac{ \sqrt{ {1}^{2} +  {2}^{2}  }  \:  \: \sqrt{ {3}^{2}  + {( - 4)}^{2}  }  }{\sqrt{ {4}^{2} +  {3}^{2}  }  \:  \: \sqrt{ {2}^{2}  + {( - 3)}^{2}  }} }

\displaystyle \sf{  =    \frac{ \sqrt{5}  \times 5}{5 \times  \sqrt{13} } }

\displaystyle \sf{  =    \frac{ \sqrt{5}  }{ \sqrt{13} } }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if a+ib/c+id is purely real complex number then prove that ad=bc

https://brainly.in/question/25744720

2. Prove z1/z2 whole bar is equal to z1 bar/z2 bar.

Bar here means conjugate

https://brainly.in/question/16314493

Similar questions