Physics, asked by anjalinikhara3250, 1 year ago

The moment of inertia of a hollow sphere of mass m and radius r about an axis passing through its centre of mass is , then its radius of gyration about an axis which is parallel to first axis and at a distance 3r will be

Answers

Answered by akhileshpathak1998
1

The moment of inertia 'I' of hollow sphere is \frac{2}{3} mr^{2} .

The radius of gyration about an axis parallel and at a distance of '3r' is \sqrt{\frac{29k^{2} }{3} }.

Explanation:

Given:

     Mass of hollow sphere is 'm'.

     Radius of hollow sphere is 'r'.

Solution,

      we know that moment of inerta 'I' of hollow sphere is \frac{2}{3} MR^{2}.

     So, by putting given values.

   

                                         ⇒ I = \frac{2}{3} mr^{2}

    Moment of inertia 'I''of axis which is parallel and at a distance of '3r' from centre axis is,

                                         ⇒ I' = \frac{2}{3} mr^{2} + m\times(3r)^{2}

                                                = \frac{2}{3} mr^{2} + 9mr^{2}

                                         ⇒ I' = \frac{29}{3} mr^{2}

Radius of gyration 'k' is,

                                          ⇒ mk^{2} = \frac{29}{3} mr^{2}

                                          ⇒ k = \sqrt{\frac{29}{3}r^{2}  }

                                           

Answered by ARKRANGER
0

Answer:

root 29k2/3 is correct

Similar questions