Physics, asked by abi627780, 10 months ago

The motion of a particle is given by y = 9(cm) sin(ωt) + 3(cm) cos(ωt) The motion is


Not an SHM


SHM with amplitude 12 cm


SHM with amplitude


SHM with amplitude 3 cm

Answers

Answered by nirman95
24

Answer:

Motion of a particle is given as :

y = 9 \sin( \omega t)  + 3 \cos( \omega t)

We need to find out if this particle is undergoing SHM or not. And if yes , what's the Amplitude of Oscillation ?

Talking 3 common , we get :

y = 3 \{3 \sin( \omega t)  +  \cos( \omega t)  \}

 =  > y = 3( \sqrt{ {3}^{2} +  {1}^{2}  } ) \{ (\frac{3}{ \sqrt{ {3}^{2} +  {1}^{2}  } } ) \sin( \omega t)  +   (\frac{1}{ \sqrt{ {3}^{2} +  {1}^{2}  } }) \cos( \omega t)  \}

 =  > y = 3 \sqrt{10}  \{ \frac{3}{ \sqrt{10}} \sin( \omega t)  +   \frac{1}{  \sqrt{10}} \cos( \omega t)  \}

Let 3/√10 be \cos(\theta) ,

then 1/√10 will be \sin(\theta)

Continuing with the equation , we get:

 =  > y = 3 \sqrt{10}  \{  \cos( \theta) \sin( \omega t)  +    \sin( \theta) \cos( \omega t)  \}

 =  > y = 3 \sqrt{10}  \sin( \omega t +  \theta)

So it's an SHM with amplitude of 3√10 cm.

Answered by Anonymous
30

Explanation:

_________________________

 \bf \huge \: Question \:  \:

  • The motion of a particle is given by y = 9(cm) sin(ωt) + 3(cm) cos(ωt) busy The motion is

  • Not an SHM
  • SHM with amplitude 12 cm

  • SHM with amplitude

  • SHM with amplitude 3 cm

_________________________

 \bf \huge \: GIVEN \:  \:

  • The motion of a particle is given by y = 9(cm) sin(ωt) + 3(cm) cos(ωt)

_________________________

 \bf \huge \: To\: Find  \:

  • What Is motion?

_________________________

considering the Equation,

y= A sin(ωt) + B cos(ωt)

Now let ,cos = a/√a^2+b^2

and sin = b/√a^2+b^2

now Putting the above given the Equation,

________________________

we get :

\bf \:y = 3 \{3 \sin( \omega t)  +  \cos( \omega t)  \}

 \bf  \:=  > y = 3( \sqrt{ {3}^{2} +  {1}^{2}  } ) \{ (\frac{3}{ \sqrt{ {3}^{2} +  {1}^{2}  } } ) \sin( \omega t)  +   (\frac{1}{ \sqrt{ {3}^{2} +  {1}^{2}  } }) \cos( \omega t)  \}

________________________

Now Using the identify,

 \bf  \:=  > y = 3 \sqrt{10}  \{ \frac{3}{ \sqrt{10}} \sin( \omega t)  +   \frac{1}{  \sqrt{10}} \cos( \omega t)  \}

Let 3/√10 be

\bf  \:\cos(\theta) ,

then 1/√10

\bf  \:\sin(\theta)

_________________________

we get:

 \bf  \:=  > y = 3 \sqrt{10}  \{  \cos( \theta) \sin( \omega t)  +    \sin( \theta) \cos( \omega t)  \}

\bf  \: =  > y = 3 \sqrt{10}  \sin( \omega t +  \theta)

Hope it helps you.

Similar questions