Math, asked by arunkaarthikeyan, 9 months ago

the next term in the ap of 1/1+√x , 1/1-x ,1/1-√x is​

Answers

Answered by vedantvispute38
2

Step-by-step explanation:

The A.P is : \frac{1}{1 +  \sqrt{x} }   \frac{1}{1 - x}  \frac{1}{1 -  \sqrt{x} } ... \\

Here :

a =  \frac{1}{1 +  \sqrt{x} }  \\ d =  \frac{1}{1 - x}  -  \frac{1}{1 +  \sqrt{x} }   =  \frac{1 +  \sqrt{x}  - 1 + x}{1 +  \sqrt{x} - x -  x \sqrt{x}  }   \\  =  \frac{x +  \sqrt{x} }{ \sqrt{x} - x \sqrt{x}  - x }    \\  =  \frac{ \sqrt{x}  ( \sqrt{x}  + 1)}{    \sqrt{x}(1 - x -  \sqrt{x})  }  \\  =  \frac{1 +  \sqrt{x} }{1 -  \sqrt{x} - x }

Also :

d =  \frac{1 }{1 -  \sqrt{x} }  -  \frac{1}{1 - x}    \\  =  \frac{ \sqrt{x} }{1 - x}

As we have got a and d,

a _{4} = a + 3d \\  =  \frac{1}{1 +  \sqrt{x} }  + 3 \times ( \frac{ \sqrt{3} }{1 - x} )  \\  =  \frac{1}{1 +  \sqrt{x} }  +   \frac{3 \sqrt{3} }{1 - x} \\  =  \frac{1 - x + 3 \sqrt{3}  + 3 \sqrt{3x} }{1 +  \sqrt{x} - x - x \sqrt{x}  }  \\  =  \frac{ \sqrt{x } - 3 \sqrt{3} - 1  }{x - 1}

And here we got the Next term i.e 4th term.

Similar questions