Math, asked by jaygurjar41, 11 months ago

the no. of solutions of equation sin2x-2cosx+4sinx=4​

Answers

Answered by isyllus
3

x=n\pi+(-1)^n\dfrac{\pi}{2}

n is natural number.

Step-by-step explanation:

Given: \sin 2x-2\cos x+4\sin x=4

But sin 2x = 2 sin x cos x

2\sin x\cos x-2\cos x+4\sin x-4=0

Factor the term

2\cos x(\sin x-1)+4(\sin x-1)=0

(\sin x-1)(2\cos x+4)=0

Equare each factor to 0

\sin x-1=0\text{ or }2\cos x+4=0

\sin x=1            \cos x\neq-2

\text{ If }\sin \theta=\sin\alpha\text{ then }\theta=n\pi +(-1)^\alpha

x=n\pi+(-1)^n\dfrac{\pi}{2}      

n is natural number

Exact solution: x=\dfrac{\pi}{2}

#Learn more:

https://brainly.in/question/7180769

Similar questions