Math, asked by 2002070488, 1 day ago

The nth term of a sequence is: 2n + 6.What is the 12th term in the sequence?

Answers

Answered by shreyasharma201109
1

Answer:

Answer is 30

Step-by-step explanation:

2(12)+6=30

Answered by BrainlyZendhya
2

The 12th term in the sequence is n = 30

Step-by-step explanation:

Given, \sf{t_n\:=\:2n\:+\:6}

Firstly, let's substitute values for {'n'} to find the first term {a} and common difference {d}.

When \sf{n\:=\:1},

\sf⟹{t_1\:=\:2(1)\:+\:6}

\sf⟹{t_1\:=\:2\:+\:6}

\sf⟹{t_1\:=8}

When \sf{n\:=\:2},

\sf⟹{t_2\:=\:2(2)\:+\:6}

\sf⟹{t_2\:=\:4\:+\:6}

\sf⟹{t_2\:=10}

When \sf{n\:=\:3},

\sf⟹{t_3\:=\:2(3)\:+\:6}

\sf⟹{t_3\:=\:6\:+\:6}

\sf⟹{t_3\:=12}

Let the sequence be, \sf{t_1\:=\:8,\:t_2\:=\:10,\:t_3\:=\:12} ....

From this we could find,

  • First term {a} = 8
  • Common Difference {d}= \sf{t_2\:-\:t_1} = \sf{10\:-\:8} = \sf{2}

Finding 12 th term :

\sf⟹{n\:=\:a\:+\:(n\:-\:1)\:d}

\sf⟹{n\:=\:8\:+\:(12\:-\:1)\:2}

\sf⟹{n\:=\:8\:+\:(11)\:2}

\sf⟹{n\:=\:8\:+\:(11)\:2}

\sf⟹{n\:=\:8\:+\:22}

\sf⟹{n\:=30}

Hence, 12th term in the sequence n = 30.

Similar questions