Math, asked by kamlabhandariktmuk, 10 months ago

the number in the ratio 2:3:4 the sum of their cubes is 33957 the number are​

Answers

Answered by mddilshad11ab
136

\tt\purple{\underbrace{Answer\implies 14,\:21,\:28}}

\sf\large\underline{Let:}

\tt{\implies The\: numbers\:be\:x}

\sf\large\underline{Given:}

\tt{\implies The\: ratio\:of\: numbers=2:3:4}

\tt{\implies The\:sum\:of\: their\:cubes=33957}

\sf\large\underline{To\: Find:}

\tt{\implies The\: numbers=?}

\sf\large\underline{Solution:}

  • At first we have to find the value of x then calculate the the numbers here. As given in the question, we have to assume the numbers are 2x , 3x, 4x]

\rm{\implies The\:sum\:of\: their\: cubes=33957}

\rm{\implies (2x)^3+(3x)^3+(4x)^3=33957}

\rm{\implies 8x^3+27x^3+64x^3=33957}

\rm{\implies 99x^3=33957}

\rm{\implies x^3=343}

  • Here we have to factorie 343 by prime factorisation method. By factoring we get 7×7×7=7³]

\rm{\implies x^3=7^3\implies x=7}

\sf\large{Hence,}

\rm{\implies The\: numbers=2x=2*7=14}

\rm{\implies The\: numbers=3x=3*7=21}

\rm{\implies The\: numbers=4x=4*7=28}

\sf\large\underline{Verification:}

\rm{\implies 14^3+21^3+28^3=33957}

\rm{\implies 2744+9261+21952=33957}

\rm{\implies 33957=33957}

\sf\large\underline{Hence,\: Verified:}


VishalSharma01: Awesome :)
Answered by IITwizzlerII
1

\sf\red{\underbrace{ Numbers \implies 14,\:21\:and\:28}}

\sf{\underline{\underline{Let:}}}

\sf{ \: \: \: \: \: three\:numbers\:be\:2x,\:3x\:and\:4x}

\sf{\underline{\underline{According\:To\:QuEStiON:}}}

\sf{ {(2x)}^{3} + {(3x)}^{3} + {(4x)}^{3} = 33957}

\sf{\implies 8{x}^{3} + 27{x}^{3} + 64{x}^{3} = 33957}

\sf{\implies 99{x}^{3} = 33957}

\sf{\implies {x}^{3} = \dfrac{33957}{99}}

\sf{\implies {x}^{3} = 343}

\sf{\implies {x}^{3} = 7 \times 7 \times 7 = {(7)}^{3}}

\sf{\implies x = 7}

\sf{\underline{\underline{Therefore:}}}

\sf{The\:greater \:number = 4x = 4 \times 7 = 28}

\sf{ And\: other\:numbers:}

\sf{3x = 3 \times 7 = 21}

\sf{ and\: 2x = 2 \times 7 = 14}

Similar questions