Math, asked by larryboy4391, 1 year ago

The number of integers n with 100 < n < 300 such that 16 divides (n^2-n-2) and 25 divides (n^2 + 2n – 3) is

Answers

Answered by amitnrw
0

Answer:

Step-by-step explanation:

The number of integers n with 100 < n < 300 such that 16 divides (n^2-n-2) and 25 divides (n^2 + 2n – 3) is

16 divides n^2-n-2

n² - n - 2

= n² -2n + n - 2

= n(n-2) + 1(n-2)

= (n+1)(n-2)

16 = 2 * 2 * 2 * 2

out of (n+1)& (n-2)  only one can be even

=> n + 1 = 16k   or  n-2 = 16k

=> n = 16k-1  or 16k+2

Values of n Between 100 & 300

111 , 127 , 143 , 159 , 175 , 191 , 207 , 223 , 239 , 255 , 271 , 287

113 129 145 161 177 193 209 , 225 , 241 ,257 ,273 , 289

25 divides (n^2 + 2n – 3)

n² +3n - n - 3

= (n+3)(n-1)

25 = 5 * 5  

out of (n+3)& (n-1)  only one can be 5 multiple

=> n + 3 = 25k  or n -1 = 25k

=> n = 25k + 3  or n = 25k +1

Values of n Between 100 & 300

122 147 172 197 222 247 272 297

101 126 151 176 201 226 251 276

There is no common integer  in both

Answered by bobbysrrp
8

Answer:

Step-by-step explanation:

The number of integers n with 100 < n < 300 such that 16 divides (n^2-n-2) and 25 divides (n^2 + 2n – 3) is

16 divides  n^2-n-2

n² - n - 2

= n² -2n + n - 2

= n(n-2) + 1(n-2)

= (n+1)(n-2)

16 = 2 * 2 * 2 * 2

out of (n+1)& (n-2)  only one can be even

=> n + 1 = 16k   or  n-2 = 16k

=> n = 16k-1  or 16k+2

Values of n Between 100 & 300

111 , 127 , 143 , 159 , 175 , 191 , 207 , 223 , 239 , 255 , 271 , 287

113 129 145 161 177 193 209 , 225 , 241 ,257 ,273 , 289

25 divides (n^2 + 2n – 3)

n² +3n - n - 3

= (n+3)(n-1)

25 = 5 * 5  

out of (n+3)& (n-1)  only one can be 5 multiple

=> n + 3 = 25k  or n -1 = 25k

=> n = 25k + 3  or n = 25k +1

Values of n Between 100 & 300

122 147 172 197 222 247 272 297

101 126 151 176 201 226 251 276

some one did this and forgot to write other numbers denoted by 16k+2 when k=14 n=226 and for 25k+1 k=9 n=226 226 is common answer is 1

Similar questions