The number of non zero solutions of the equation 3[x] = 5{x} + x; where [·] and {·} denotes the greatest integer function and fractional function respectively, is
Zero
One
Two
Three
Answers
Answered by
24
Answer:
2
Step-by-step explanation:
[·] and {·} denotes the greatest integer function and fractional function respectively.
So we can write x = [x] + {x}
Now coming to the question,
3[x] = 5{x} + x
⇒ 3[x] = 5{x} + [x] + {x}
⇒ 3[x] - [x] = 5{x} + {x}
⇒ 2[x] = 6{x}
⇒ [x] = 3{x}
⇒ {x} = [x] / 3
Since [x] is the integral part,
if [x] = 1, {x} = 1/3 = 0.333; x = 1 + 0.333 = 1.333
if [x] = 2, {x} = 2/3 = 0.667 ; x = 2 + 0.667 = 2.667
if [x] = 3, {x} = 3/3 = 1, (discarded as {x} is always less than 1)
So there are 2 non-zero solutions: x = 1.333 and 2.667
Answered by
1
Step-by-step explanation:
[-] and [-] denotes the greatest integer function
and fractional function respectively.
So we can write x = [x] + {x}
Now coming to the question,
3[x]=5[x]+x
⇒ 3[x] = 5{x} + [x] + {x}
⇒ 3[x]-[x] = 5{x} + {x}
⇒ 2[x] = 6[x]
⇒ [x] =3[x]
⇒ [x] = [x]/3
Since [x] is the integral part,
if [x]=1,[x]=1/3=0.333 x = 1+ 0.333 = 1.333
if [x]=2,[x]=2/3=0.667 ; x = 2 + 0.667 = 2.667
if [x] = 3, [x] = 3/3 = 1, (discarded as {x} is always
less than 1)
So there are 2 non-zero solutions: x=1.333
and 2.667
Similar questions