The number of positive integral solutions to the
system of equations a1 + a2 + a3 + a4 + a5 = 47 and
a1+a3 = 37 is
(a) 2376
(b) 2246
(c) 2024
(d) 1296
Answers
Given : a1 + a2 + a3 + a4 + a5 = 47 and a1+a3 = 37 is
To Find : number of positive integral solutions
(a) 2376
(b) 2246
(c) 2024
(d) 1296
Solution:
a1 + a2 + a3 + a4 + a5 = 47
a1+a3 = 37
=> a2 + a4 + a5 = 10
a2 =1 This mean a4 + a5 = 9 can be in 8 ways
a2 =2 This mean a4 + a5 = 8 can be in 7 ways
a2 =8 This mean a4 + a5 = 2 can be in 1 way
ways = 8 + 7 + .................+ 1
= 8 * 9/2
= 36 Ways
a1+a3 = 37
a1 can be from 1 to 36
=> 36 Ways
Total ways
36 * 36 = 1296 ways
The number of positive integral solutions to the system of equations a1 + a2 + a3 + a4 + a5 = 47 and a1+a3 = 37 is 1296
option D is correct
Learn More:
Find the number of ways in which 5 people A,B,C,D and E can be ...
https://brainly.in/question/13919329
Find the number of ways of drawing 9 balls from a bag that has6 red ...
https://brainly.in/question/13094556