Math, asked by Zoulofer, 1 month ago

The number of roots of the equation\sqrt{x^{2} -4} - (x-2) = \sqrt{x^{2} -5x+6}

Answers

Answered by Anonymous
13

Given Expression,

 \sf \: \sqrt{x^{2} -4} - (x-2) = \sqrt{x^{2} -5x+6} \\   \\  \implies \sf \:  \sqrt{(x - 2)(x + 2)}  - (x - 2) =  \sqrt{(x - 2)(x - 3)}  \\  \\  \implies \sf \: \sqrt{x - 2} \bigg \{\sqrt{x + 2} -  \sqrt{x - 2} \bigg\}   = ( \sqrt{x - 2} )( \sqrt{x - 3} ) \\  \\  \implies \sf \: \sqrt{x - 2} \bigg \{\sqrt{x + 2}  -  \sqrt{x - 2}  - \sqrt{x - 3}\bigg \}  = 0 \\ \\ \implies \sf \sqrt{x - 2} = 0 \\ \\ \implies \boxed{\boxed{\sf x = 2}}

Consider,

\implies \sf \: \sqrt{x + 2}  -  \sqrt{x - 2}  - \sqrt{x - 3} = 0 \\ \\ \implies \sf \sqrt{x + 2}  -  \sqrt{x - 2}   = \sqrt{x - 3}

Squaring on both sides,

 \implies \sf \: ( \sqrt{x + 2}  -  \sqrt{x - 2}) {}^{2}   =(  \sqrt{x - 3} ) {}^{2}  \\  \\  \implies \sf \: x + 2  + x - 2  - 2  \sqrt{ {x}^{2}  - 4}  = x - 3 \\  \\  \implies \sf \: 2x - x + 3 = 2 \sqrt{ {x}^{2}  - 4}  \\  \\  \implies \sf \: x + 3 = 2 \sqrt{ {x}^{2}  -  4 }

Squaring on both sides,

 \implies \sf \:  {x}^{2}  + 6x + 9  = 4( {x}^{2}   - 4) \\  \\  \implies \sf \: 3 {x}^{2}  - 6x - 25 = 0 \\  \\  \implies \sf \: x =  \dfrac{ - ( - 6) \pm \sqrt{( - 6) {}^{2}  - 4(3)( - 25)} }{2(3)}  \\  \\ \implies \sf \: x =  \dfrac{ 6 \pm \sqrt{336} }{6}  \\  \\ \implies \sf \: x =  \dfrac{ 6 \pm 4\sqrt{21} }{6} \\  \\  \implies \boxed{ \boxed{ \sf \: x \:  =  \dfrac{3  + 2 \sqrt{21} }{3}  \: or \:  \dfrac{3 - 2 \sqrt{21} }{3} }}

Answered by esuryasinghmohan
2

Step-by-step explanation:

given :

The number of roots of the equation\sqrt{x^{2} -4} - (x-2) = \sqrt{x^{2} -5x+6}

to find :

sqrt{x^{2} -4} - (x-2) = \sqrt{x^{2} -5x+6}[/tex]

solution :

  • Comparing the equation with ax²+bx+c = 0 gives,

  • a = 1, b = -5 and c = 6

  • b²-4ac = (-5)2-4×1x6 = 1

  • Roots of the equations are

  • -b +√(b² - 4ac) /2a

  • = 5 + 12 = 62

  • = 3

  • Another root

  • -b-√(b² - 4ac) /2a

  • = 5-12

  • = 42

  • = 2

  • Answer

  • Hence the roots of the equation are 3 and 2
Similar questions