Math, asked by BrainlyHelper, 11 months ago

The number of terms of the A.P. 3, 7, 11, 15, ... to be taken so that the sum is 406 is
(a) 5
(b) 10
(c) 12
(d) 14
(e) 20

Answers

Answered by nikitasingh79
6

Answer:

The number of terms in the AP are 14.

Among the given options option (d) 14  is a correct answer.

Step-by-step explanation:

Given :

A.P are 3,7, 11,15 ……. & Sn =  406

Here, a = 3 d = 7 - 3 = 4

By using the formula ,Sum of nth terms , Sn = n/2 [2a + (n – 1) d]

406 = n/2  [2(3) + (n – 1) 4

406 = n/2 [6 - 4n - 4]

406  = n/2 [2 - 4n]

406  = n/2  × 2 [1 - 2n]

406  = n [1 - 2n]

406 = n - 2n²

2n² + n - 406 = 0

2n² + 29 n – 28 n – 406 = 0

[By middle term splitting]

n (2n + 29) – 14(2n + 29) = 0

(n – 14) (2n + 29) = 0

(n – 14) or (2n + 29) = 0

n = 14 or n = - 29/2 (terms can't be negative)

Hence, the number of terms in the AP are 14.

HOPE THIS ANSWER WILL HELP YOU….

Answered by BrainlyConqueror0901
99

Answer:

\huge{\red{\boxed{\boxed{\green{\sf{14-TERMS}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}}

A.P=3,7,11,15,...

a1=3

common difference=4

Sn=406

To find:

number of terms in this A.P=?

sn =  \frac{n}{2} (2a + (n - 1)d) \\  = )406 =  \frac{n}{2} (2 \times 3 + (n - 1) \times 4) \\  = )406 =  n(3 + (n  - 1) \times 2) \\  = )406 = n(3 + 2n - 2) \\  = )406 = n(2n + 1) \\  = )406 = 2 {n}^{2}  + n \\  = )2 {n}^{2}  + n - 406 = 0 \\  \\ use \: quadratic \: formula \\ d =  {b}^{2}  - 4ac \\  d = {1}^{2}  - 4(2 \times  - 406) \\ d = 1 - 4( - 812) \\ d = 1 + 3248 \\   d = 3249 \\  \\   x = \frac{ - b +  -  \sqrt{d} }{2a}  \\  x = \frac{ - 1 +  \sqrt{3249} }{2 \times 2}  \\ x =  \frac{ - 1 + 57}{4}  \\  x =  \frac{56}{4}  \\ x = 14 \\  \\ x =  \frac{ - 1 - 57}{4}  \\ x =  \frac{ - 58}{4}  \\ value \: of \: n \: cannot \: be \: in \: fraction \: or \: in \: negative \: \\  \therefore \:  \: number \: of \: terms  = 14

\huge{\red{\boxed{\boxed{\green{\sf{14-TERMS}}}}}}

_________________________________________

Similar questions