The number of the terms of the series 10+9 2/3+9 1/3+9+........will amount to 155 is?
Answers
310= n ( 20 - ( n-1) 1/3)
930 = n( 60 - n +1)
930 = 60 n - n.n + n
930 = 61 n - n.n
n.n - 61n +930 = 0
n = (61 +- 1)/2
= 31,30
At 30 and 31 terms the sum of the terms will be amount to 155
Given:
10+9 2/3+9 1/3+9+........is a number series
To find:
The number of terms at which 10+9 2/3+9 1/3+9+........will amount to 155
Solution:
Given sequence 10+9 2/3+9 1/3+9+...... is a Arithmetic sequence
Where first term a = 10
and common difference d =T₂ - T₁ = 9 2/3 - 10 = -1/3
⇒ Common difference d = -1/3
Let's assume that at n terms the sum of the terms = 155
As we know Sum of n terms =
⇒
⇒
⇒
From above data, a = 10 and d = -1/3
⇒
⇒
⇒
⇒
⇒ 60n - n² + n = 930
⇒ n² - 61n + 930 = 0
Now fectorize n²- 61n + 930 = 0 to get n value
⇒ n²- 61n + 930 = 0
Split -61n as -30n - 31n
⇒ n²- 30n - 31n + 930 = 0
⇒ n(n-30) -31 (n-30) = 0
⇒ (n-30)(n-31) = 0
⇒ n - 30 = 0 and n - 31 = 0
⇒ n = 30 and n = 31
Therefore,
At 30 and 31 terms the sum of the terms will be amount to 155
#SPJ2