Math, asked by balavarshith2005, 4 months ago

The number of zeroes that polynomial f(x) = (x-2)^2 +4 can have is ​

Answers

Answered by dharammechp4pms7
0

0-2^2 =-4

-4+4 =0 is corrrect

Answered by Anonymous
9

 \bf \LARGE  \color{pink}Hola!

GiveN :

 \sf \rightsquigarrow \: Given \:  \:  polynomial  \:  \: f(x) = {(x - 2)}^{2}  + 4

To FinD :

 \sf \rightsquigarrow \: The \:  \:  number \:  \:  of  \:  \: Zeros

 \sf \rightsquigarrow \: Zeros  \:  \: of \:  \:  the  \:  \: polynomial

SolutioN :

~Expression :

 \:  \:  \sf \: f(x) =  {(x - 2)}^{2}  + 4

→ For it to be zero,

 \implies \sf  {(x - 2)}^{2}  + 4 = 0

 \implies \:  \sf {x}^{2}  - 4x + 4 + 4 = 0

 \implies \:  \sf {x}^{2}  - 4x +8 = 0

  \sf \: Sridharacharya \:  \:  formula,  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{  \tt \: x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }

 \implies \sf \: x =  \frac{  - ( - 4) \pm  \sqrt{ {( - 4)}^{2} - 4 \times 1 \times 8 }  }{2 \times 1}  \\

 \implies \sf \: x =  \frac{4 \pm \:  \sqrt{ - 16} }{2}  \\

 \implies \sf \: x =  {}{2} \: \pm \:  i \:  4  \\

 \large \therefore \sf \: Hence, \:   we  \:  can \:    see    \: there  \:   doesn't exist  \:  any  \:  \: real \:    value  \:   for  \:f( x )\:  to\:  be  \:   zero \\

ConcepT BoosteR :

 \sf \rightsquigarrow \: Let's  \:  \: have \:  \:  a  \:  \: look  \:  \: in\:  \:  the  \:  \: graph  \:  \:  of  \:  \: the \:  \:  polynomial

 \underline{ \underline{ \mathbb  {GRAPH \:    \:  IS \:  \:  IN \:  \:  THE  \:  \: ATTACHMENT}}}

__________________

HOPE THIS IS HELPFUL...

 \tt \fcolorbox{skyblue}{skyblue}{@StayHigh}

Attachments:
Similar questions