Math, asked by SLAYNITE, 10 months ago

the numerator of a fraction 4 less than its denominator . If one is added to both the numerator and denominator ,the fraction becomes 1/2.find the fraction

Answers

Answered by Sauron
27

Answer:

\sf{The \: fraction \: is \:  \:  \dfrac{3}{7}}

Step-by-step explanation:

Let,

The numerator of a fraction = x

The denominator of a fraction = x + 4

If one is added to both the numerator and denominator

So,.

The numerator of a fraction = x + 1

The denominator of a fraction = x + 4 + 1

⇒ x + 5

\sf{\dfrac{x + 1}{x + 5}   \: =  \:  \dfrac{1}{2}}

⇒ 2 (x + 1) = 1 (x + 5)

⇒ 2x + 2 = x + 5

⇒ 2x - x = 5 - 2

⇒ x = 3

The numerator of a fraction = 3

The denominator of a fraction = x + 4

⇒ 3 + 4

⇒ 7

Therefore,

\sf{The \: fraction \:  is \:  \:  \dfrac{3}{7}}

Answered by Aeviternal
17

\huge\tt\colorbox{purple}{Answer}

\sf{\bold{\green{\underline{\underline{Given}}}}}

⠀⠀

  • Numerator is 4 less than denominator
  • If 1 is added to both then the fraction becomes 1/2

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

⠀⠀⠀⠀

  • Required fraction = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

Let the denominator be x

⠀⠀⠀⠀

Therefore numerator is x - 4

⠀⠀⠀⠀

Acc. to the question :-

⠀⠀⠀⠀

\sf :\implies\:{\dfrac{x-4+1}{x+1} = \dfrac{1}{2}}

⠀⠀⠀⠀

\sf :\implies\:{\dfrac{x- 3}{x+1} = \dfrac{1}{2}}

⠀⠀⠀⠀

\sf :\implies\:{2 ( x - 3 ) = x + 1 }

⠀⠀⠀⠀

\sf :\implies\:{2x - 6 = x + 1 }

⠀⠀⠀⠀

\sf :\implies\:{2x - x = 6 + 1 }

⠀⠀⠀⠀⠀⠀⠀

\sf :\implies\:{x = 7 }

⠀⠀⠀⠀

Putting value of x in the fraction

⠀⠀⠀⠀

  • Numerator = x - 4 = 7 - 4 = 3

⠀⠀⠀⠀

  • Denominator = x = 7

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

  • Required fraction = 3 / 7
Similar questions