Math, asked by tuzkebabri, 10 months ago

. The numerator of a fraction is 1 less than the denominator.
If Sara adds 1 to the numerator and adds 2 to the denominator, the fraction is 34, when expressed in its simplest form.
Find the original fraction.

Answers

Answered by StarrySoul
48

Correct Question :

The numerator of a fraction is 1 less than the denominator. If Sara adds 1 to the numerator and adds 2 to the denominator, the fraction is 3/4, when expressed in its simplest form. Find the original fraction.

Solution :

Let the numerator of the fraction be x and denominator be y

Fraction = \sf\dfrac{x}{y}

Given numerator is 1 less than the denominator

Fraction = \sf\dfrac{x-1}{x}

Sara added 1 to the numerator and 2 to the denominator.

Fraction = \sf\dfrac{x-1+1}{x+2}

The Fraction becomes 3/4

 \longrightarrow \sf \:   \dfrac{x - 1 + 1}{x + 2}  =  \dfrac{3}{4}

 \longrightarrow \sf \:   \dfrac{x}{x + 2}  =  \dfrac{3}{4}

 \longrightarrow \sf \:  4 \times  {x} = 3 \times (x + 2)

 \longrightarrow \sf \:  4x= 3x+ 6

 \longrightarrow \sf \:  4x - 3x = 6

 \longrightarrow \sf \:  x = 6

Hence,The value of x is 6 . Let's put it in our assumption \sf\dfrac{x-1}{x}

 \longrightarrow\sf\dfrac{x - 1}{x}

 \longrightarrow\sf\dfrac{6 - 1}{6}

 \longrightarrow\sf\dfrac{5}{6}  \:  \rightarrow\:  Original \:  Fraction

Hence,Original Fraction is 5/6

Answered by Anonymous
39

Given :

  • The numerator of a fraction is 1 less than the denominator.
  • If 1 is added to the numerator and 2 is added to the denominator, the fraction is \sf{\dfrac{3}{4}} expressed in simplest form.

To Find :

  • The original fraction

Solution :

Let the numerator of the fraction be x.

Let the denominator of the fraction be y.

Fraction \large{\sf{\red{\dfrac{x}{y}}}}

Case 1 :

\sf{Numerator\:=\:Denominator\:-\:1}

Equation :

\large{\boxed{\sf{x\:=\:y-1\:\:...(i)}}}

Case 2 :

Numerator ( x + 1)

Denominator ( y + 2)

Equation :

\blue{\implies} \sf{\dfrac{(x+1)}{(y+2)}\:=\:\dfrac{3}{4}}

\blue{\implies} \sf{4(x+1)=3(y+2)}

\blue{\implies} \sf{4x+4=3y+6}

\blue{\implies} \sf{4x-3y=6-4}

\sf{4x-3y=2\:\:...(ii)}

From equation (i), \sf{x=y-1}

\blue{\implies} \sf{4(y-1) - 3y = 2}

\blue{\implies} \sf{4y-4-3y=2}

\blue{\implies} \sf{4y-3y=2+4}

\blue{\implies} \sf{y=6}

Substitute, y = 6 in equation (i),

\blue{\implies} \sf{x=y-1}

\blue{\implies} \sf{x=6-1}

\blue{\implies} \sf{x=5}

Fraction :

\large{\boxed{\sf{\red{Numerator\:=\:x\:=\:5}}}}

\large{\boxed{\sf{\green{Denominator\:=\:y\:=\:6}}}}

\large{\boxed{\sf{\purple{Fraction\:=\:\dfrac{x}{y}\:=\:\dfrac{5}{6}}}}}

Similar questions