Math, asked by plk41, 1 year ago

The numerator of a fraction is 3 less than its denominator. if the denominator is increased by 2 and the numerator is decreased by 5 the fraction becomes 28/33.find the original number

Answers

Answered by Sauron
53

\mathfrak{\large{\underline{\underline{Answer :-}}}}

The Original Fraction is \dfrac{61}{64}

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

Given :

Numerator of the Fraction = 3 less than its Denominator.

The Denominator is increased by 2 and the numerator is decreased by 5 the fraction becomes = \dfrac{28}{33}

To Find :

The original number

Solution :

\textbf{\small{\underline{Consider the -}}}

  • Denominator as x
  • Numerator as (x - 3)

\rule{300}{1.5}

\textbf{\small{\underline{According to the Question -}}}

  • x + 2 = 33
  • (x - 3) - 5 = 28

\boxed{\frac{(x - 3) - 5 }{x + 2} =  \frac{28}{33}}

 \longrightarrow \: \dfrac{(x - 3) - 5 }{x + 2} =  \dfrac{28}{33}

\longrightarrow \: \dfrac{x - 3 - 5 }{x + 2} =  \dfrac{28}{33}

\longrightarrow \: \dfrac{x - 8 }{x + 2} =  \dfrac{28}{33}

\longrightarrow \: 33(x - 8) = 28(x + 2)

\longrightarrow \: 33x - 264 = 28x + 56

\longrightarrow \: 33x - 28x = 56 + 264

\longrightarrow \: 5x = 320

\longrightarrow \: x =  \dfrac{320}{5}

\longrightarrow \: x = 64

Denominator = 64

\rule{300}{1.5}

Value of (x - 3)

\longrightarrow \: (64 - 3)

\longrightarrow \: 61

Numerator = 61

\therefore The Original Fraction is \dfrac{61}{64}

\rule{300}{1.5}

\mathfrak{\large{\underline{\underline{Verification :-}}}}

\longrightarrow \:  \dfrac{61 - 5}{64 + 2} =  \dfrac{28}{33}

\longrightarrow \:  \dfrac{56}{66} =  \dfrac{28}{33}

\longrightarrow \:  \dfrac{56 \div 2}{66 \div 2} =  \dfrac{28}{33}

\longrightarrow \:  \dfrac{28}{33}  =  \dfrac{28}{33}

\therefore The Original Fraction is \dfrac{61}{64}

Answered by Anonymous
59

» The numerator of a fraction is 3 less than its denominator.

• Let Denominator = M

and

• Numerator = M - 3

» If the denominator is increased by 2 and the numerator is decreased by 5 the fraction becomes 28/33.

A.T.Q.

New Numberator = (M - 3) - 5

Denominator = M + 2

\dfrac{(M\:-\:3)\:-\:5}{M\:+\:2}\:=\:\dfrac{28}{33}

\dfrac{M\:-\:3\:-\:5}{M\:+\:2}\:=\:\dfrac{28}{33}

\dfrac{M\:-\:8}{M\:+\:2}\:=\:\dfrac{28}{33}

Cross-multiply them

→ 33(M - 8) = 28(M + 2)

→ 33M - 264 = 28M + 56

→ 33M - 28M = 56 + 264

→ 5M = 320

→ M = 320/5

→ M = 64

_____________________________

Now..

Numerator = M - 3

→ 64 - 3

→ 61

Denominator = M

→ 64

____________________________

We have to find the original number/fraction.

i.e.

Fraction = \dfrac{Numerator}{Denominator}\:=\:\dfrac{M}{M\:-\:3}

\dfrac{61}{64}

___________________________

Fraction = \dfrac{61}{64}

_______ [ ANSWER ]

___________________________

✡ VERIFICATION :

From above calculations we have M = 64

Put value of M in this equation :

\dfrac{(M\:-\:3)\:-\:5}{M\:+\:2}\:=\:\dfrac{28}{33}

=> \dfrac{(64\:-\:3)\:-\:5}{64\:+\:2}\:=\:\dfrac{28}{33}

=> \dfrac{56}{66}\:=\:\dfrac{28}{33}

=> \dfrac{28}{33}\:=\:\dfrac{28}{33}

_____________________________

Similar questions