Math, asked by Sashwati, 1 year ago

The numerator of a fraction is 3 less than its denominator. If 2 is added to both numerator and denominator, then the sum of the new fraction and original fraction is 29/20. Find the original fraction.

Answers

Answered by komal199
14
numerator=x-3
denominator=x

then
numerator=x-1
denominator=x+2

(x-3/x)/x+(x-1/x+2)=29/20
by solving
this equation will come
11x^2-98x-120
use formula( -b+-√b^2-4ac)/2a
you will get the value of x
x=10 and -12/11

original fraction will be
10/13 and -12/21
plzz check the answer I am not sure

Answered by Anonymous
13

\huge\mathfrak\red{Solution} \\  \\  \\ \tt{Let\:the\:fraction\:be   \: \frac{x - 3}{x}} \\  \\  \tt{By\:the\:given\: condition,\:new\:fraction= \frac{x - 3 + 2}{x + 2}} \\\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt={\frac{x - 1}{x + 2}} \\  \\   \tt{\frac{x - 3}{x}  +  \frac{x - 1}{x + 2}  =  \frac{29}{20}} \\  \\  \tt{ \implies \: 20[(x - 3)(x + 2) + x(x - 1)] = 29(x^{2}  + 2x)} \\  \\  \tt{ \implies \: 20[ x^{2} - x - 6 + x^{2}  - x] = 29x^{2}  + 58x} \\  \\  \tt{ \implies  \: 20[2x^{2} - 2x - 6 ] = 29x^{2}  + 58x} \\  \\  \tt{ \implies  \: 40x^{2}  - 40x - 120 - 29x^{2} - 58x = 0} \\  \\  \tt{ \implies \: 11x^{2}  - 98x - 120 = 0} \\  \\  \tt{ \implies \:  11x^{2}   - 110x + 12x - 120 = 0} \\  \\  \tt{ \implies  \: 11x(x - 10) + 12(x - 10) = 0} \\  \\  \tt{ \implies  \:(x - 10) (11x  + 12 )= 0} \\  \\  \tt{ \implies  \:x = 10  \:  \:  \:  \:  \:  \therefore \: x(i.e. \: denominator) > 0} \\  \\  \tt{ \therefore \: x =  \frac{ - 12}{11} \: is \: rejected. } \\  \\  \tt{ \therefore \: the \: fration \: is \frac{7}{10}. } \\  \\  \\   \mathfrak \green{hope  \: \purple{it} \: helps}

Similar questions