Math, asked by PragyaParamitaBehera, 10 months ago

The numerator of a fraction is 4 less than the denominator .If 1
is added to the both the numerator and the denominator it
becomes Find the fraction​

Answers

Answered by Anonymous
202

Answer:

Given:

  • The numerator of a fraction is 4 less than the denominator.
  • If 1  is added to the both the numerator and the denominator it  becomes 1/2.

To Find:

  • Fraction.

Let denominator be x.

So, it is given that numerator is 4 less than denominator, Numerator = x - 4.

Now, according to question, if 1  is added to the both the numerator and the denominator it  becomes 1/2. So,

\rm{\implies \dfrac{x-4+1}{x+1}=\dfrac{1}{2}}

\rm{\implies \dfrac{x-3}{x+1}=\dfrac{1}{2}}

Now, by cross multiply we will find the value of x,

\rm{\implies 2(x-3)=1(x+1)}

\rm{\implies 2x-6=x+1}

\rm{\implies 2x-x=6+1}

\rm{\implies x=7}

Therefore, Denominator = 7

Numerator = 7 - 4 = 3.

{\boxed{\boxed{\rm{Hence,\;fraction\;be\;\;\dfrac{3}{7}}}}}


Anonymous: Good!!
Anonymous: Thank you :)
Answered by Anonymous
140

\bold{\underline{\underline{\huge{\mathfrak{AnsWer:}}}}}

\bold{\tt{\blue{Fraction\:}}} = \bold{\tt{\red{\dfrac{3}{7}}}}

\bold{\underline{\underline{\large{\mathfrak{StEp\:by\:stEp\:explanation:}}}}}

\bold{\underline{\underline{\red{\tt{GiVeN:}}}}}

  • The numerator of a fraction is 4 less than the denominator.
  • If 1 is added to the both the numerator and the denominator it becomes \sf{\dfrac{1}{2}}

\bold{\underline{\underline{\blue{\tt{To\:FiNd:}}}}}

  • The Fraction

\bold{\underline{\underline{\pink{\tt{SoLuTioN :}}}}}

Let the numerator of the fraction be x.

Let the denominator of the fraction be y.

Fraction :

  • \sf{\dfrac{x}{y}}

\bold{\underline{\underline{\green{\tt{As\:per\:the\:first\:condition:}}}}}

  • The numerator of a fraction is 4 less than the denominator.

\longrightarrow \tt{x\:=\:y\:-\:4}

\longrightarrow \tt{x-y=-4\:--->(1)}

\bold{\underline{\underline{\green{\tt{As\:per\:the\:second\:condition:}}}}}

  • If 1 is added to the both the numerator and the denominator it becomes \sf{\dfrac{1}{2}}

\sf{\therefore{Numerator\:=\:x+1}}

\sf{\therefore{Denominator\:=\:y+1}}

\sf{\therefore{Fraction\:={\dfrac{1}{2}}}}

\longrightarrow \tt{\dfrac{x+1}{y+1}} = \tt{\dfrac{1}{2}}

Cross multiplying,

\longrightarrow \tt{2(x+1)=1(y+1)}

\longrightarrow\tt{2x+2\:=\:y+1}

\longrightarrow \tt{2x-y=1-2}

\longrightarrow \tt{2x-y=-1\:---->(2)}

Solve equation 1 and equation 2 simultaneously by elimination method.

Subtract equation (2) from equation (1)

\longrightarrow \tt{2x-y-(x-y)\:=\:-1-(-4)}

\longrightarrow \tt{2x-y-x+y=-1+4}

\longrightarrow \tt{2x-x=3}

\longrightarrow \tt{x=3}

Substitute x = 3 in equation (1),

\longrightarrow \tt{x-y=-4\:--->(1)}

\longrightarrow \tt{3\:-y\:=\:-4}

\longrightarrow \tt{-y=-4-3}

\longrightarrow \tt{-y=-7}

\longrightarrow \tt{y=7}

\bold{\underline{\boxed{\Large{\purple{\rm{Numerator\:=\:x\:=3}}}}}}

\bold{\underline{\boxed{\Large{\purple{\sf{Denominator\:=\:y\:=7}}}}}}

\bold{\underline{\boxed{\Large{\purple{\tt{Fraction\:=\:{\dfrac{x}{y}\:=\:{\dfrac{3}{7}}}}}}}}}


Anonymous: Gazab Gazab, Tere jaisa answer h
Similar questions