The ones digit of to two-number number is twice the tens digit when the number formed by reversing the digit is added to the original number the sum is 99 find the original number
Answers
Answered by
0
so the solution will be 36
Attachments:
Answered by
2
Answer:
Let the tens digit be y and the ones digit be x.
The original number = 10y + x
The reverse number = 10x + y
It is given that ones digit is twice the tens digit :]
➳ x = 2y ............[Equation (i)]
According to question now,
➳ 10x + y + 10y + x = 99
➳ 11x + 11y = 99
➳ 11 (x + y) = 99
➳ x + y = 99/11
➳ x + y = 9
➳ y = 9 - x.........[Equation (ii)]
Now, Substituting equation (ii) in equation (i) we get :
➳ x = 2 (9 - x)
➳ x = 18 - 2x
➳ 3x = 18
➳ x = 18/3
➳ x = 6
Putting x = 6 in equation (ii) we get :
➳ y = 9 - x
➳ y = 9 - 6
➳ y = 3
Therefore,
The original number = 10y + x = 10(3) + 6 = 30 + 6 = 36
Similar questions