The orchard has the shape of a rectangle. The area is 1800 m2. Length and width of the garden.
Answers
Answer:
Step-by-step explanation:
Given : Area of a rectangular garden is 8000 square meters. Ratio in length and breadth is 5:4. A path of uniform width runs all-round the inside of the garden. If the path occupies 3200 m.
To find : What is its width?
Solution :
Ratio of length and breadth is 5 : 4 and area is 8000 m².
Let length and breadth be 5x and 4x.
∴ Area of rectangle = Length × Breadth
⇒ 8000 = 5x × 4x
⇒ 8000 = 20x²
⇒ x² = 400
⇒ x = 20
Then,
Length = 100 m.
Breadth = 80 m.
Now,
Given that a path runs all round the right inside of the garden.
Let the width of the garden be 'x' meters.
⇒ 8000 - (100 - x - x)(80 - x - x) = 3200
⇒ 8000 - (100 - 2x)(80 - 2x) = 3200
⇒ -(100 - 2x)(80 - 2x) = 3200 - 8000
⇒ (100 - 2x)(80 - 2x) = 4800
⇒ 8000 - 200x - 160x + 4x² = 4800
⇒ 4x² - 360x + 8000 = 4800
⇒ x² - 90x + 800 = 0
⇒ x² - 80x - 10y + 800 = 0
⇒ x(x - 80) - 10(x - 80) = 0
⇒ (x - 10)(x - 80) = 0
⇒ x = 10,80 {It is not possible because breadth is 80 m}
∴ x = 10 m
So, Width = 10 m