Math, asked by krinalku, 4 days ago

The P.I. of (D^3 – 2D²D') 2 = e^x+2y​

Answers

Answered by rizrotate
0

Answer:

Step-by-step explanation:

OLUTION

Let us use some known facts. Let the given differential equation be

F(D,D')=f(x,y)F(D,D  

)=f(x,y)

Factorize F(D,D')F(D,D  

) into linear factors. Then use the following results:

Corresponding to each non-repeated factor \left(bD-aD'-c\right)(bD−aD  

−c) , the part of C.F. is taken as

\exp\left(\frac{cx}{b}\right)\cdot\varphi(by+ax),\quad if\quad b\neq0exp(  

b

cx

)⋅φ(by+ax),ifb

=0

In our case,

\left(D^2+3DD'+2D'^2\right)z=x+y\longrightarrow z(x,y)=C.F.+P.I.(D  

2

+3DD  

+2D  

′2

)z=x+y⟶z(x,y)=C.F.+P.I.

0 STEP: We factor the expression

\left(D^2+3DD'+2D'^2\right)=\left(D^2+DD'\right)+\left(2DD'+2D'^2\right)=(D  

2

+3DD  

+2D  

′2

)=(D  

2

+DD  

)+(2DD  

+2D  

′2

)=

=D\left(D+D'\right)+2D'\left(D+D'\right)=\left(D+D'\right)\left(D+2D'\right)=D(D+D  

)+2D  

(D+D  

)=(D+D  

)(D+2D  

)

Conclusion,

\boxed{\left(D^2+3DD'+2D'^2\right)z=\left(D+D'\right)\left(D+2D'\right)z}  

(D  

2

+3DD  

+2D  

′2

)z=(D+D  

)(D+2D  

)z

 

1 STEP: Let find C.F.

Similar questions