Math, asked by CookyK, 20 days ago

The pairs of opposite sides of a parallelogram are (3x , 18) and (3y-1, 26), find x and y​

Answers

Answered by XxMrZombiexX
93

 \bigstar \sf \red{ \underline{Given \:  that   : } - }

The pair of opposite sides of a parallelogram are

  • 》( 3x ,18 )
  • 》 (3y -1 , 26 )

 \bigstar \sf \green{ \underline{To \:  Find    : } - }

  • 》Find the value of x and y

  \bigstar \sf  \purple{ \underline{used  \: theorem  : } - }

  • The opposite side of parallelogram are equal

 \bigstar \sf  \blue{ \underline{Solution: } - }

given data : - The The pairs of opposite sides of a parallelogram are (3x , 18) and (3y-1, 26) .we have to find the value of x and y .

as we know that

  • Opposite side of parallelogram are equal

So , let first we find CD and AB

  \\ \longrightarrow\tt CD \qquad \qquad AB \\  \\

 \\  \longrightarrow\tt  \: 3y \: -   \: 1 \:  =  \:  26 \qquad \qquad \:  \blue{(given)} \\  \\

 \\  \longrightarrow\tt 3y  \:  \: =  \:  \: 26 + 1 \\  \\  \\  \longrightarrow\tt  \: 3y \:  \:  =  \:  \: 27 \\  \\  \\  \longrightarrow\tt y \:  \:  \:  =   \cancel\frac{27}{3}  \\  \\  \\    \red{\boxed{\longrightarrow\tt  \frak{y = 9}}}

Now we find AB and BD

 \\  \longrightarrow\tt AB  \qquad \qquad \qquad BD \\  \\

 \\ \longrightarrow\tt \: 3x \:  \:  =  \:  \: 18 \qquad \qquad \:  \blue{(given)} \\  \\

 \\ \longrightarrow\tt \: 3x \:  \:  = 18 \:  \\   \\ \\ \longrightarrow\tt \: x =  \cancel \frac{18}{3}  \\  \\  \\  \green{ \boxed{\longrightarrow\tt \:  \frak{x = 6}}}

Therefore the value of x = 6 and y = 9

Attachments:
Answered by Yugant1913
96

 \bigstar \sf \red{ \underline{Given \:  that   : } - }

The pair of opposite sides of a parallelogram are : -

》( 3x ,18 )

》 (3y -1 , 26 )

 \bigstar \sf \green{ \underline{To \:  Find    : } - }

》Find the value of x and y

  \bigstar \sf  \purple{ \underline{used  \: theorem  : } - }

The opposite side of parallelogram are equal

 \bigstar \sf  \blue{ \underline{Solution: } - }

given data : - The The pairs of opposite sides of a parallelogram are (3x , 18) and (3y-1, 26) .we have to find the value of x and y .

as we know that

  • Opposite side of parallelogram are equal

let first we find GU and SN

  \\ \longrightarrow\tt GU \qquad \qquad SN \\  \\

 \\  \longrightarrow\tt  \: 3y \: -   \: 1 \:  =  \:  26 \qquad \qquad \:  \blue{(given)} \\  \\

 \\  \longrightarrow\tt 3y  \:  \: =  \:  \: 26 + 1 \\  \\  \\  \longrightarrow\tt  \: 3y \:  \:  =  \:  \: 27 \\  \\  \\  \longrightarrow\tt y \:  \:  \:  =   \cancel\frac{27}{3}  \\  \\  \\    \red{\boxed{\longrightarrow\tt  \frak{y = 9}}}

hence GU and SN be 9

Now we find SG and NU

 \\  \longrightarrow\tt SG  \qquad \qquad \qquad NU \\  \\

 \\ \longrightarrow\tt \: 3x \:  \:  =  \:  \: 18 \qquad \qquad \:  \blue{(given)} \\  \\

 \\ \longrightarrow\tt \: 3x \:  \:  = 18 \:  \\   \\ \\ \longrightarrow\tt \: x =  \cancel \frac{18}{3}  \\  \\  \\  \green{ \boxed{\longrightarrow\tt \:  \frak{x = 6}}}

hence SG and NU be 6

Therefore the value of x = 6 and y = 9

Attachments:
Similar questions