The parallel sides AB and DC of a trapezium ABCD are 51 cm and 30 CM respectively. If the sides AD and BC are 20 cm and 13 cm respectively,find the :
(I) Distance between parallel sides
(ii) Area of trapezium ABCD
Answers
Answer:
Draw CE∥DA and CF⊥AB.
Therefore, ADCE is a parallelogram having AE∥CD and CE∥DA.
⇒AD=CE=39cm,DC=AE=30cm and BE=75−30=45cm
In △BCE, by heron's formula we have
a=39cm,b=45cm and c=42cm
⇒s=
2
a+b+c
=
2
39+42+45
=63cm
∴ Area of ΔBEC=
s(s−a)(s−b)(s−c)
=
63(63−39)(63−42)(63−45)
cm
2
=
63×24×21×18
cm
2
=756cm
2
Also, Area of ΔBEC=
2
1
×base×height
⇒
2
1
×45×h=756cm
2
⇒h=33.6cm
So, Area of trapezium:-
=
2
1
×(AB+CD)×height
=
2
1
×(75+30)×33.6=1764cm
2
Answer:
Draw CE∥DA and CF⊥AB.
Therefore, ADCE is a parallelogram having AE∥CD and CE∥DA.
⇒AD=CE=39cm,DC=AE=30cm and BE=75−30=45cm
In △BCE, by heron's formula we have
a=39cm,b=45cm and c=42cm
⇒s=
2
a+b+c
=
2
39+42+45
=63cm
∴ Area of ΔBEC=
s(s−a)(s−b)(s−c)
=
63(63−39)(63−42)(63−45)
cm
2
=
63×24×21×18
cm
2
=756cm
2
Also, Area of ΔBEC=
2
1
×base×height
⇒
2
1
×45×h=756cm
2
⇒h=33.6cm
So, Area of trapezium:-
=
2
1
×(AB+CD)×height
=
2
1
×(75+30)×33.6=1764cm
2