Math, asked by neetuagarwal45678, 10 months ago

The parallel sides DC and ab of a Trapezium are 25 cm and 10cm respectively its non parallel sides are each equal to 15 cm find the area of the trapezium​

Answers

Answered by StarrySoul
118

\textbf{\huge{\underline{Given:}}}

● Measure of DC = 25 cm

● Measure of AB = 10 cm

● Non-parallel sides = 15 cm

\textbf{\huge{\underline{To\:Find:}}}

Area of Trapezium

\textbf{\huge{\underline{Solution:}}}

Let ABCD be the given trapezium in which AB = 10 cm, DC = 25 cm, BC = 15 cm and AD = 15 cm

 \rm \: Through \:  B, draw  \ratio

  \star  \: \sf BF \parallel AD

 \star \:  \sf BE  \perp DC

Now,

 \hookrightarrow \rm \: FC  = DC -  DF

 \hookrightarrow \sf \: FB  =25 - 10

 \hookrightarrow \sf \: FB   =  \large \boxed{ \sf \: 15 \ cm}

In triangle FCB,FB= BC = 15 cm

So,It is an Isosceles Triangle

Also,BE is perpendicular to FC. So,E is the midpoint of FC

 \sf \:  \therefore \: FE  =  \dfrac{1}{2} \:  \times  FC

 \hookrightarrow \sf \: FE =  \dfrac{1}{2}  \times 15 \: cm

 \hookrightarrow \:  \sf \: FE = \large \boxed{ \sf \: 7.5   \: cm}

 \star \rm \: In \: right \: angled \:  triangle \: BEF

 \hookrightarrow \sf \:  {BF}^{2}  =  {FE}^{2}   + {BE}^{2}

 \hookrightarrow \sf \:  {15}^{2}  =  {7.5}^{2}   + {BE}^{2}

 \hookrightarrow \sf \:  {BE}^{2}  = 225 - 56.25

 \hookrightarrow  \sf {BE}^{2}  = 168.75

 \hookrightarrow  \sf BE=  \sqrt{168.75}

 \hookrightarrow  \sf BE=   \large \boxed{ \sf  13 \: cm} \: (approx)

Now,Area of Trapezium ABCD =

 \hookrightarrow \rm \:  \dfrac{1}{2} (AB +  DC ) \times BE

 \hookrightarrow \rm \:  \dfrac{1}{2} (25+  10 ) \times 13 \:

 \hookrightarrow \rm \:  \dfrac{1}{2}   \times 35 \times 13 \:

 \hookrightarrow \large \boxed{ \sf \: 227.5 \: cm^2 } \:  \sf \: (approx)

Attachments:

VishalSharma01: Nice Answer :_
StarrySoul: Thank you!♡
Anonymous: Accha nhi h
Anonymous: balki Bahut accha h
Anonymous: xD
StarrySoul: Shukrya nhi
StarrySoul: balki Bahut Shukriya xD
Answered by EliteSoul
110

Answer:

• Reference in the attachment★

\textbf{\underline{Given:}}

☆ AB = 10 cm

☆ DC = 25 cm

☆ Non Parallel sides : AC & BD = 15 cm

\rule{300}{2}

\textbf{\underline{To\:Find\::}}

☆Area of the trapezium.

\rule{300}{2}

\textbf{\underline{Extra\::}}

Draw BE on DC so that BE is perpendicular to DC. Then draw BH on DC. So E is the midpoint of DH.

So, HE = DE............(i)

CH = AB = 10 cm

☆ DH = DC - CH

DH = (25 - 10) cm

★ DH = 15 cm

\rule{300}{2}

HE =\frac{1}{2}\times DH

HE =\frac{1}{2}\times 15\:cm

★HE = 7.5 cm

\rule{300}{2}

DCH is an isosceles triangle because BH = BD = 15 cm.

∆DEH :- In right angled triangle ,

{BH}^{2} = {BE}^{2}+{HE}^{2}

{15}^{2}={BE}^{2}+{7.5}^{2}

225 = {BE}^{2}+56.25

{BE}^{2}=225-56.25

{BE}^{2}=168.75

BE = \sqrt{168.75}

BE = 12.99 cm

\rule{300}{2}

Area\:of\:trapezium=\frac{1}{2}\times(AB+DC)\times BE

Area =\frac{1}{2}\times ( 10+25)\times 12.99

Area =\frac{1}{2}\times  35 \times 12.99

Area =\frac{1}{2}\times  454.65

Area =227.325 {cm}^{2}

\large\boxed{Area=227.325{cm}^{2}(Approx.)}

Hope it helps you ♥ ♥ ♥

Attachments:
Similar questions