Math, asked by nishita6279, 6 hours ago

The parallel sides of a traperium are in the ratio 2:3, its height is 20cm and area is 500 cm ² find the length of the parallel sides

please ans me​

Answers

Answered by 40132016
45

Answer:

Since they are in ratio 2:3, let side be 2x and 3x respectively. 2x=2(10)=20. 3x=3(10)=30.

Annyeong Army (◍•ᴗ•◍)❤

Attachments:
Answered by sethrollins13
125

Given :

  • The parallel sides of a trapezium are in the ratio 2:3 . and the area is 500 cm² .
  • Height is 20 cm .

To Find :

  • Length of parallel sides .

Solution :

\longmapsto\tt{Let\:one\:parallel\:side\:be=2x}

\longmapsto\tt{Let\:other\:parallel\:side\:be=3x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Trapezium=\dfrac{1}{2}\times{(Sum\:of\:parallel\:sides)}\times{h}}

Putting Values :

\longmapsto\tt{500=\dfrac{1}{{\cancel{2}}}\times{(2x+3x)}\times{{\cancel{20}}}}

\longmapsto\tt{500=(2x+3x)\times{10}}

\longmapsto\tt{500=20x+30x}

\longmapsto\tt{500=50x}

\longmapsto\tt{x=\cancel\dfrac{500}{50}}

\longmapsto\tt\bf{x=10}

Value of x is 10 .

Therefore :

\longmapsto\tt{Length\:of\:one\:parallel\:side=2(10)}

\longmapsto\tt\bf{20\:cm}

\longmapsto\tt{Length\:of\:other\:parallel\:side=3(10)}

\longmapsto\tt\bf{30\:cm}

Similar questions