The parallel sides of a trapezium are 12 cm and 17 cm. Its non-parallel sides are equal, each
of length 6.5 cm. Considering the trapezium as the sum of a parallelogram and an isosceles
triangle, find its area.
10 cm
Answers
Answer:
The area of the trapezium is 87 cm².
Step-by-step-explanation:
NOTE: Refer to the attachment for the diagram.
In figure, □ABCD is a trapezium.
AD ∥ BC
AB ∦ CD
We have given that,
AD = 12 cm
BC = 17 cm
AB = CD = 6.5 cm
Draw seg DE such that DE ∥ AB. - - - [ Construction ]
Now, in □ABED,
AD ∥ BC - - - [ Given ]
∴ AD ∥ BE - - - [ B - E - C ]
Also,
AB ∥ DE - - - [ Construction ]
∴ □ABED is a parallelogram. - - - [ By definition ]
∴ AB = DE = 6.5 cm - - - [ Opposite sides of parallelogram ]
AD = BE = 12 cm - - - [ Opposite sides of parallelogram ]
Now,
BC = 17 cm - - - [ Given ]
⇒ BE + CE = 17 cm - - - [ B - E - C ]
⇒ 12 + CE = 17 cm
⇒ CE = 17 - 12 cm
⇒ CE = 5 cm
Now, in △DEC,
DE = 6.5 cm
DC = 6.5 cm
CE = 5 cm
∴ △DEC is an isosceles triangle.
Draw DM ⊥ BC i. e. EC. - - - [ Construction ]
Now, we know that,
An altitude drawn in an isosceles triangle from the common vertex of congruent sides to the third side bisects the third side.
∴ In △DEC,
EM = CM = ½ * CE
⇒ CM = ½ * 5
⇒ CM = 5 ÷ 2
⇒ CM = 2.5 cm
Now, in △DMC, m∠DMC = 90°,
∴ ( DC )² = ( DM )² + ( CM )² - - - [ Pythagoras theorem ]
⇒ DC² = DM² + CM²
⇒ DM² = DC² - CM²
⇒ DM² = ( 6.5 )² - ( 2.5 )²
⇒ DM² = ( 6.5 + 2.5 ) ( 6.5 - 2.5 ) - - - [ ∵ a² - b² = ( a + b ) ( a - b ) ]
⇒ DM² = 9 * 4
⇒ DM = √( 9 * 4 ) - - - [ Taking square roots ]
⇒ DM = √( 3 * 3 * 2 * 2 )
⇒ DM = 3 * 2
⇒ DM = 6 cm
Now, we know that,
Area of trapezium = ( Sum of parallel sides * Height ) / 2
⇒ A ( □ABCD ) = [ ( AD + BC ) * DM ] / 2
⇒ A ( □ABCD ) = [ ( 12 + 17 ) * 6 ] / 2
⇒ A ( □ABCD ) = 12 + 17 * 6 / 2
⇒ A ( □ABCD ) = 29 * 6 ÷ 2
⇒ A ( □ABCD ) = 29 * 3
⇒ A ( □ABCD ) = 87 cm²
∴ The area of the trapezium is 87 cm².
Answer:
The parallel sides of a trapezium are 12 cm and 17 cm. Its non-parallel sides are equal, each
of length 6.5 cm. Considering the trapezium as the sum of a parallelogram and an isosceles
triangle, find its area.
10 cm