Math, asked by george0096, 1 month ago

The parallel sides of a trapezium are 25 cm and 11 cm, while its nonparallel sides are 15 cm and 13 cm. Find the area of the trapezium.

Answers

Answered by Anonymous
25

Given:

⠀⠀⠀⠀⠀⠀⠀

  • Parallel sides of the trapezium = 25cm & 11cm
  • Non-Parallel sides = 15cm & 13cm

To find:

  • Area of trapezium?

⠀⠀⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀⠀⠀⠀

Parallel sides are equal.

So,

  • AB - DC = EB, EB = 15cm
  • DA ≈ CE, ED = 14cm

⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{1.2 cm}\begin{picture}(0,0)\linethickness{0.5mm}\qbezier(0,0)(0,0)(1,3)\qbezier(5,0)(5,0)(4,3)\qbezier(1,3)(1,3)(4,3)\qbezier(3,0)(8.2,0)(0,0)\put(-0.5,-0.3){$\sf A$}\put(-0.5,-0.3){ \sf \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ E}\put(5.3,-0.3){$\sf B$}\put(4.2,3.1){$\sf C$}\put(0.6,3.1){$\sf D$}\end{picture}

⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\begin{gathered}\star\;{\boxed{\sf{\purple{{Heron's \: formula } = \dfrac{a + b + c}{2}}}}} \\ \end{gathered}\end{gathered}

⠀⠀⠀⠀⠀⠀⠀

In ∆BDC,

⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\begin{gathered}:\implies\sf \dfrac{13 + 14 + 15}{2}\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies\sf \dfrac{42}{2}\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies{ {\boxed{\sf{\pink{ \sf 21}}}}} \:  \:  \bigstar \: \\ \\\end{gathered}\end{gathered}

⠀━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

Now, By using the formula given below,

⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\begin{gathered}\star\;{\boxed{\sf{\purple{{{ Area =  \sqrt{s(s - a)(s - b) (s - c) }  }}}}}} \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies\sf \sqrt{21(21 - 15)(21 - 14) (21 - 13) }\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies\sf \sqrt{21(6)(7) (8) }\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies\sf \sqrt{7056 }\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies{\boxed{\sf{\purple{{84 \:  {cm}^{2} }}}}}\\ \\\end{gathered}\end{gathered}

\sf {\underline{Thus, Area  \: of \:  \triangle  BDC  \:  is  \:  { \frak{ \pmb{84 \: cm^2}}}, Respectively}}

⠀⠀⠀⠀⠀⠀⠀

⠀━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

Now, Let's find height of the trapezium,

⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\begin{gathered}\star\;{\boxed{\sf{\purple{{{ Area =  \dfrac{1}{2} \times b \times h  }}}}}} \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies\sf h =  \dfrac{84 \times 2}{14}\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies\sf h =  \dfrac{168}{14}\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies \boxed{\sf  \pink{h =  12\: cm}} \:  \bigstar\\ \\\end{gathered}\end{gathered}

⠀⠀⠀⠀⠀⠀⠀

\sf {\underline{Thus, Height \: of \:  trapezium \:  is  \:  { \frak{ \pmb{12 \: cm}}}, Respectively}}

⠀━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

Lastly, Let's find area of trapezium,

⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\begin{gathered}\star\;{\boxed{\sf{\purple{{{ Area =  \dfrac{a + b}{2} \times h }}}}}} \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies\sf  \frac{1}{2}  \times (11 + 25)  \times 12\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies\sf  \frac{1}{2}  \times 36 \times 12\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}:\implies\sf  \boxed{  \sf \pink{216 \:  {cm}^{2}}}  \:  \bigstar\\ \\\end{gathered}\end{gathered}

\sf {\underline{Therefore, Area  \: of \:  trapezium \:  is  \:  { \frak{ \pmb{216 \: cm^2}}}, Respectively}}

Answered by BrainlyShinestar
89

Given : Parallel sides of a trapezium are 25 cm and 11 cm.

To Find : Area of the Trapezium ?

_____________________

Solution : Let ABC is the Trapezium such than,

AB//CD, AB = 11 cm, CD = 25 cm

AD = 15 cm & BC = 13 cm

~

  • \leadstoWe draw BE lr DC & BF//AD

~

~~~~~~~~~~{\sf:\implies{ABDF~is~a~//^{gm}}}

~~~~~~~~~~{\sf:\implies{BF~=~15~cm~\&~DF~=~11~cm}}

~~~~~~~~~~{\sf:\implies{FC~=~25~-~11~=~14~cm}}

~

{\sf\therefore{Area ~of~\triangle~=~BCF~=~\dfrac{1}{\cancel{2}}}~(\cancel{14})~×~BE~=~7BE~~~~~~~~~~~~~~~~~~~\bigg\lgroup{Eqⁿ~(i)\bigg\rgroup}}

~

\underline{\frak{As ~we~ know that~:}}

~

  • \boxed{\sf\pink{Heron's ~Formula~=~\dfrac{A~+~B~+~C}{2}}}

~

~~~~~~~~~~{\sf:\implies{S~=~\dfrac{~13~+~14~+~15}{2}}}

~~~~~~~~~~{\sf:\implies{S~=~\dfrac{1}{2}(13~+~14~+~15)}}

~~~~~~~~~~{\sf:\implies{S~=~\cancel\dfrac{42}{2}}}{\sf{=~21~cm}}

~~~~~~~~~~:\implies{\underline{\boxed{\frak{\pink{S~=~21~cm}}}}}

~

___________________________________

  • \leadstoFind Area of Triangle ?

\underline{\frak{As~ we ~know~ that~:}}

  • \boxed{\sf\pink{Area~ of~\triangle~=~\sqrt{s(s~-~a)(s~-~b)(s~-~c)}}}

~

~~~~~~~~~~{\sf:\implies{Area ~of~\triangle~BCF~=~\sqrt{21(21~-~13)(21~-~14)(21~-~15)}}}

~~~~~~~~~~{\sf:\implies{Area ~of~\triangle~BCF~=~\sqrt{21(8)(7)(6)}}}

~~~~~~~~~~{\sf:\implies{Area ~of~\triangle~=~\sqrt{7056}}}

~~~~~~~~~~:\implies{\underline{\boxed{\frak{\pink{Area ~of~\triangle~=~84~cm^2}}}}}

~

Therefore,

\therefore\underline{\sf{Area~ of~\triangle~BCF~is~\bf{84~cm^2}}}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\bigg\lgroup{\sf{Eqⁿ~(ii)\bigg\rgroup}}

~

_____________________________________

  • \leadsto Find Height of Trapezium ?

~~~~~~~~~~{\sf:\implies{7BE~=~84}}

~~~~~~~~~~{\sf:\implies{BE~=~\cancel\dfrac{84}{7}}}{\sf{=~12~cm}}

  • {\underline{\boxed{\frak{\pink{Height ~of~Trapezium~=~12~cm}}}}}

~

Therefore,

\therefore\underline{\sf{Height ~of~ the ~Trapezium~ is~\bf{12~cm}}}

~

____________________________________

  • \leadsto Find Area of Trapezium ?

\underline{\frak{As~ we~ know~ that~:}}

  • \boxed{\sf\pink{Area~=~\dfrac{a~+~b}{2}~×~h}}

~

~~~~~~~~~~{\sf:\implies\therefore{Area~of~the~Trapezium~=~\dfrac{1}{\cancel{2}}(25~+~11)~×~\cancel{12}}}

  • \underset{\blue {\rm Required\ Answer}}{\underbrace{\boxed{\frak{\pink{Area ~of ~the~ Trapezium~=~216~cm^2}}}}}

~

Hence,

\therefore\underline{\sf{Area ~of ~the ~Trapezium~is~\bf{216~cm^2}}}

~~~~\qquad\quad\therefore\underline{\textsf{\textbf{Hence Verified!}}}

Similar questions