the parallel sides of a trapezium are 25 cm and 13 cm . The length of each non-parallel side is 10cm . Find the area of the trapezium
Answers
Step-by-step explanation:
25x13
325
325-10
315 ans
Let ABCD is a trapezium, AB || DC,
AB = 25, CD = 11 , AD= 13 , BC =1cm
Draw CL || AB and CM || DA meeting AB at L and M respectively.
Therefore, AMCD is a parallelogram.
MC = AD = 13cm AM = DC =11cm
MB = (AB—AM) = (25—11) = 14 cm
In triangle CMB, CM = 13 , MB = 14 , BC = 15
let ML = x, CL = y cm, LB = 14 – x ,
In triangle CML,
CL²= CM² – ML²
y² = 13² – x²...............(1)
In triangle CLB,
CL² = CB² – LB²
y² = 15² – (14—x)²............... (2)
From (1) and (2)
13² – x² = 15² – (14—x)²
169 – x² = 225 – (196 + x²– 28x)
169 – x² = 225 – 196 – x² + 28x
28x = 169 + 196 – 225 + x² – x²
28x = 140
X = 5 cm
Substitute x value in eq (1)
y² = 13² – x²
y² = 13² – 5²
y² = 169 – 25
y² = 144
y = 12 cm
Therefore, CL = 12 cm that is height of the trapezium = 12 cm
Area of trapezium =1/2×(sum of parallel sides)×height
Area of trapezium =1/2× (25 + 11) × 12 = 216 cm²