Math, asked by kauramberdeep, 7 months ago

The parallel sides of a trapezium are 73 and 27 m. If the
perpendicular distance between them is 40 m. The area
(in mº)will be:
(a) 4400
0 (b) 4800
(c) 2000
D (d) 4000​

Answers

Answered by lasya60
1

Step-by-step explanation:

hope this helps you alot.....

Attachments:
Answered by Anonymous
7

 \large{\underline{\boxed{\boxed{\sf Let's \: Understand \: Concept \: F1^{st}}}}}

Here is the concept of Area of Trapezium in which two parallel sides and the Perpendicular distance between them is given. After using the formula for area of Trapezium. We will substitute the given values in it and then we will got our required answer.

\huge{\underline{\boxed{\sf Answer}}}

═════════════════════════════════

 \large{\bf{\underline{Given:-}}}

  • Parallel Sides of Trapezium = 73m and 27m
  • Perpendicular Distance between them = 40m

 \large{\bf{\underline{Find:-}}}

  • Area of Trapezium

 \large{\bf{\underline{Formula \: Used:-}}}

 \sf \qquad \bullet Area \: of \: Trapezium =  \dfrac{1}{2} \times (sum \: of \: parallel \: sides) \times height \\  \\

 \large{\bf{\underline{Solution:-}}}

we, know that

 \underline{\boxed{\sf Area \: of \: Trapezium =  \dfrac{1}{2} \times (sum \: of \: parallel \: sides) \times height}}

 \mapsto\sf Area \: of \: Trapezium =  \dfrac{1}{2} \times (a + b) \times h\\  \\

where,

  • a = 73m
  • b = 27m
  • h = 40m

Substituting these values in the formula

 \leadsto\sf Area \: of \: Trapezium =  \dfrac{1}{2} \times (a + b) \times h\\  \\

 \leadsto\sf Area \: of \: Trapezium =  \dfrac{1}{2} \times (73 + 27) \times 40\\  \\

 \leadsto\sf Area \: of \: Trapezium =  \dfrac{1}{2} \times (100) \times 40\\  \\

 \leadsto\sf Area \: of \: Trapezium =  \dfrac{1}{2} \times 4000\\  \\

 \leadsto\sf Area \: of \: Trapezium =  \dfrac{4000}{2}\\  \\

 \leadsto\sf Area \: of \: Trapezium = 2000 {m}^{2} \\  \\

 \small{\therefore\underline{\sf Area \: of \: Trapezium = 2000 {m}^{2}}}

═════════════════════════════════

Hence,

Correct Option will be option (c) 2000m²

Similar questions