the parallel sides of trapezium are 77m and 60m and non parallel sides are 25m and 26m . find the area of trapezium??
Answers
Answered by
145
Hello,
let's look at the figure.
AB=60 m;DF=77 m;AD=25m; BF=26mwe calculate the CF:
CF=DF-CD=77-60=17 m
For ΔBCF,
we calculate the perimeter of triangle
P=BC+BF+CF=25+26+17=68 m
we calculate the semiperimeter of the triangle:
p=P/2=68/2=34 m
we use the formula of Heron:
At=√p×(p-BC)×(p-BF)×(p-CF);
=√34(34-25)(34-26)(34-17)
=√34×9×8×17=√41616= 204 m²
we calculate the height of triangle:
BE=2At:CF=(2×204):17=408:17=24 m
we calculate the area of Trapezium
A =[(AB+DF)×BE):2=[(60+77)×24]=(137×24):2=3288:2=1644 m²
bye :-)
let's look at the figure.
AB=60 m;DF=77 m;AD=25m; BF=26mwe calculate the CF:
CF=DF-CD=77-60=17 m
For ΔBCF,
we calculate the perimeter of triangle
P=BC+BF+CF=25+26+17=68 m
we calculate the semiperimeter of the triangle:
p=P/2=68/2=34 m
we use the formula of Heron:
At=√p×(p-BC)×(p-BF)×(p-CF);
=√34(34-25)(34-26)(34-17)
=√34×9×8×17=√41616= 204 m²
we calculate the height of triangle:
BE=2At:CF=(2×204):17=408:17=24 m
we calculate the area of Trapezium
A =[(AB+DF)×BE):2=[(60+77)×24]=(137×24):2=3288:2=1644 m²
bye :-)
Attachments:
ajaybisht:
thanks
Answered by
14
Answer:
Draw a line BC parallel to AD
Draw a perpendicular line BE on DF
ABCD is a parallelogram.
BC=AD=25 cm
CD=AB=60 cm
CF=77−CD=17cm
For ΔBCF
semiperimeter of triangle=
2
25+26+17
=
2
68
=34
By Heron's Formula of triangle=
s(s−a)(s−b)(s−c)
=
34(34−25)(34−26)(34−17
)
=204cm²
Also, area of ΔBCF=
2
1
×base×height
204=
2
1
BE×CF
204=
2
1
BE×17
BE=408/17
BE=24 cm
Area of Trapezium=
2
1
(AB+DF)×BE
=1/2(60+77)×24
Area=1644cm²
Similar questions