English, asked by Anonymous, 4 months ago

the perimete tryr of a triangle is 450m . the ratio of i ints side's are 13:12:5 using herons formula find the area of the triangle​ by​

Answers

Answered by ItzCaptonMack
111

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\mathfrak{\pink{GIVEN,}}

\dashrightarrow \red{ Perimeter\:of\: triangle= 450m}

\dashrightarrow  \orange{ratios\:of\:the\:sides\:of\:triangles\:are }\\ \dashrightarrow \pink{13:12:5}

\large{\boxed{\bf{ \mathfrak{\blue{FORMULA,}}}}}

\rm{\boxed{\sf{ \large{\circ}\:\: area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)} \:\: \large{\circ}}}}

\large\underline\mathfrak{\pink{TO\:FIND,}}

\dashrightarrow \green{Area\:of\:triangle\:using\:herons\: formula.}

\large\underline\mathfrak{\purple{SOLUTION,}}

\therefore \green{let\:the\:constant\:be\:'x'\:m}

\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x }

\therefore \orange{finding\:the\:value\:of\:x.}

\dashrightarrow \purple{perimeter\:of\:triangle= a+b+c}

\dashrightarrow \blue{13x+12x+5x=450}

\implies \green{30x=450}

\implies \green{x= \dfrac{450}{30} }

\implies \green{x = \cancel\dfrac{450}{30}}

\implies \green{x=15}

\rm{\boxed{\bf{ \:\: x=15 \:\: }}}

\dashrightarrow \red{x=15}\\  \pink{a= 13x= 13\times 15= 195m}\\ \blue{\dashrightarrow b=12x= 12\times 15 = 180m}\\ \dashrightarrow \purple{c=5x= 5\times 15= 75m}

NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,

\therefore \orange{s= \dfrac{a+b+c}{2}}

\implies \orange{ s= \dfrac{195+180+75}{2}}

\implies \orange{s= \dfrac{450}{2}}

\implies \orange{s= 225}

\bf\dashrightarrow \red{area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)}}

\implies \purple{\sqrt{225(225-195)(225-180)(225-75)}}

\implies \purple{ \sqrt{225(30)(45)(150)}}

\implies \purple{\sqrt{ 225(1350)(150)}}

\implies \purple{15\sqrt{202500}}

\implies \purple{15 \times 450}

\implies \purple{6750m^2}

\rm{\boxed{\sf{ \large{\circ}\:\:area\:of\:triangle= 6750m^2 \:\: \large{\circ}}}}

\rm\underline\mathfrak{\pink{AREA\:OF\:TRIANGLE\:IS\:6750m^2.}}

Answered by Bᴇʏᴏɴᴅᴇʀ
51

Correct Question:-

The perimeter of a triangle is 450m . The ratio of its side's are 13:12:5. Using Heron's formula find the area of the triangle.

Answer:-

\red{\bigstar} Area of the triangle\large\leadsto\boxed{\tt\purple{6750 \: m^2}}

Given:-

  • Perimeter of the triangle = 450 m

  • Ratio of their sides = 13:12:5

To Find:-

  • Area of the triangle.

Solution:-

Let the sides of the triangle in ratio be 13x , 12x and 5x.

Given that,

Perimeter of the triangle is 450 m.

Hence,

\sf 450 = 13x + 12x + 5x

\sf 30x = 450

\sf x = \dfrac{450}{30}

\bf\pink{x = 15}

Therefore,

  • 13x = 13 × 15 = 195 m

  • 12x = 12 × 15 = 180 m

  • 5x = 5 × 15 = 75 m

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We know, by Heron's formula:-

\underline{\boxed{\bf\red{Area \: of \: triangle = \sqrt{s(s-a)(s-b)(s-c)}}}}

Firstly, finding the semi - perimeter (s):-

\sf s = \dfrac{a + b + c}{2}

\sf s = \dfrac{195 + 180 + 75}{2}

\sf s = \dfrac{450}{2}

\bf\pink{s = 225 \: m}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Substituting in the Heron's Formula:-

\sf Area = \sqrt{225 (225-195)(225-180)(225-75)} \\

\sf Area = \sqrt{225 \times 30 \times 45 \times 150} \\

\sf Area = \sqrt{225 \times 1350 \times 150} \\

\sf Area = \sqrt{303750 \times 150} \\

\sf Area = \sqrt{45562500} \\

\large{\bf\pink{Area = 6750 \: m^2}} \\

Therefore, the area of the triangle is 6750 .


Cosmique: Perfect.★
Similar questions