Math, asked by Anonymous, 10 months ago

the perimeter of a rectangle is 104 m and its
area is 640 m². Find its length and breadth..​

Answers

Answered by krishnaveni2225
7

Answer:

l=20

b=32

Step-by-step explanation:

2(l+b)=104

now, transfer 2 from LHS to RHS

l+b= 104/2= 52

now we can conclude l+b=52

l×b=640 (this is area)

l+b=52

l×b=640

20+32=52

20×32=640

therefore l=20 ,b=32

Answered by Anonymous
8

{ \red{ \huge{ \boxed{ \bold{ \underline{ \: solution}}}}}}

Given :-

▪ the perimeter of a rectangle is 104 m and its area is 640 square m.

To Find :-

length and breadth of the rectangle??

■》let the length ( l ) of the rectangle be x m.

for a rectangle,

{ \boxed{ \bold{ \: area \:  =  \: length \times breadth}}}

{ \bold{ \implies{ \: 640 \:  {m}^{2}  = x \:  \times  \: breadth}}}

{ \bold{ \implies{ \: breadth(b) \:  =  \:  \frac{640}{x} m}}}

{ \boxed{ \bold{ \: perimeter \:  = 2( \: l \:  +  \: b \: )}}}

{ \bold{ \implies{104 \: m \:  = 2(x \:  +  \frac{640}{x} )}}}

{ \bold{ \implies{(x +  \frac{640}{x} ) = 52}}}

{ \bold{ \implies{ \frac{( {x}^{2}  + 640)}{x}  = 52}}}

 { \bold{ \implies{ {x}^{2}  + \:  640 =  \: 52x}}}

{ \bold{ \implies{ {x}^{2}  \:  -  \: 52x \:  +  \: 640 \:  =  \: 0}}}

{ \bold{ \implies{ {x}^{2}  -   (32x + 20x) + 640 = 0}}}

{ \bold{ \implies{ {x}^{2}  - 32x - 20x + 640 = 0}}}

{ \bold{ \implies{ x(x - 32)  - 20(x - 32) = 0}}}

{ \bold{ \implies{ (x - 20)(x - 32) = 0}}}

=》 x = 20 m , 32m

• If we take x = 20 m = length

then, breadth = 640/x = 640/ 20 = 32m

while , when x = 32m = length

breadth = 640/ 32 = 20m

HoPE iT hELpS you

Similar questions