Math, asked by pkb22011980, 8 months ago

the perimeter of a rectangle is 360m. if its length is decreased by 20% and breadth is increased by 25%. we get the same perimeter. find the dimensions of the rectangle.

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
27

\huge\sf\pink{Answer}

☞ Length = 100 m

☞ Breadth = 80 m

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ Perimeter of a rectangle is 360 m

✭ If the perimeter is decreased by 20% & the breadth is increased by 25% the perimeter is the same

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ The dimensions of the rectangle?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

We know that perimeter of a rectangle is given by,

\underline{\boxed{\sf Perimeter_{Rectangle} = 2(l+b)}}

  • Perimeter = 360 m

\sf2(l+b) = 360

\sf l+b = \dfrac{360}{2}

\sf l+b = 180 \:\:\ -eq(1)

\underline{\boldsymbol{According \ to \ the \ Question}}

When the length is decreased by 20%

\sf l-\dfrac{20l}{100}

\sf\dfrac{100l-20l}{100}

\sf\dfrac{80l}{100}

\sf\dfrac{8l}{10}

When the breadth is increased by 25%

\sf b+\dfrac{25b}{100}

\sf b+\dfrac{1b}{4}

\sf\dfrac{4b+1b}{4}

\sf\dfrac{5b}{4}

So now given that their perimeter is 360

\sf2\bigg\lgroup \dfrac{8l}{10} + \dfrac{5b}{4}\bigg\rgroup = 360

\sf2\bigg\lgroup\dfrac{16l+25b}{20}\bigg\rgroup = 360

\sf16l+25b = 360\times 10

\sf16l+25b = 3600 \:\:\ -eq(2)

Multiplying eq(1) by 16 and subtracting it from eq(2)

\sf(16l+25b)-(16l+16b) = 3600-2880

\sf16l+25b-16l-16b = 720

\sf9b = 720

\sf b = \dfrac{720}{9}

\sf\red{Breadth = 80 \ m}

Substituting the value of b in eq(1)

»» \sf l+b =180

»» \sf l = 180-80

»» \sf \orange{Length = 100 \ m}

━━━━━━━━━━━━━━━━━━

Answered by Anonymous
25

 \pink{\large{\underline{\underline{ \rm{Given: }}}}}

✿ Perimeter of a rectangle is 360m.

✿ The length is decreased by 20% and breadth is increased by 25%.

✿ Perimeter is same in both the cases.

 \pink{\large{\underline{\underline{ \rm{To \: Find: }}}}}

⚜ The dimensions i.e., length and breadth of a rectangle.

 \pink{\large{\underline{\underline{ \rm{Solution: }}}}}

Let length and breadth of the rectangle be x and y.

We know the perimeter of rectangle =  \green{ \underline{ \boxed{ \rm{2(l + b)}}}}

  \tt{\therefore{2(x + y) = 360}}

 \tt{x + y =  \frac{360}{2} }

 \tt{x + y = 180}

By Multiplying both sides by 16, We get:

 \tt{x \times 16 + y \times 16 = 180 \times 16}

 \tt{16x + 16y = 2880} ..........①

As per the question :

When the length is decreased by 20%

 \tt{x - 20\%}

  \tt{= x -  \frac{20}{10}x }

 \tt{ =  \frac{100 - 20}{100} x}

 \tt{ =  \frac{80}{100} </u></strong><strong><u>x</u></strong><strong><u> =  \frac{8}{10}</u></strong><strong><u>x</u></strong><strong><u> }

When the length is increased by 25%

 \tt{y +  \frac{25}{100} }

 \tt{ = y +  \frac{1}{4} }

 \tt{ =  \frac{4 + 1}{4} y}

 \tt{ =  \frac{5}{4} y}

We know that the perimeter is 360°

We have,

 \tt{2( \frac{8}{10} x +  \frac{5}{4} y )= 360 }

 \tt{2( \frac{16x + 25y}{20})  = 360 }

Now 2 and 20 gets cancel, we have:

 \tt{ \frac{16x + 25y}{10}  = 360 }

 \tt{16x + 25y = 360  \times 10}

 \tt{16x + 25y = 3600 } .........②

Now Substract eq① from eq:

 \tt{(16x + 25y) - (16x + 16y) = 3600  - 2800}

 \tt{16x + 25y - 16x - 16y = 720}

 \tt{9y = 720}

 \tt{y =  \frac{720}{9}}

 \tt{y = 80 }

Breadth of a rectangle = \green{ \underline{ \boxed{ \rm{80 \: m}}}}

Substituting the value of y i.e., breath in eq①.

 \tt{l + b = 180}

 \tt{l + b = 180 - 80}

 \tt{l = 100 \: m}

Length of a rectangle = \green{ \underline{ \boxed{ \rm{100 \: m}}}}

Similar questions