Math, asked by alisaidul30828, 9 days ago

The perimeter of a rectangle is equal to that of a square with side 13 m. If the rectangle is 16 m long, what is its breadth​

Answers

Answered by mishraaryan3007
2

Step-by-step explanation:

Here is your answer.

I have written in short form.

perimeter of rectangle= 2(l+b)

perimeter of square= 4 × sides

Attachments:
Answered by BrainlyResearcher
28

Question

The perimeter of a rectangle is equal to that of a square with side 13 m. If the rectangle is 16 m long, what is its breadth.

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Required Answer​

  • 10 meters

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Given

  • Perimeter of square is equal to perimeter of rectangle
  • Side of square=13 meters
  • length of rectangle=16m

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

To Find

  • Breadth=?

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Formula Using

{\large{\underline{\pmb{\frak{Perimeter\:of\:Square}}}}}

\bigstar{\underline{\boxed{\sf{Perimeter_{\:square}=\red{4s}}}}}

{\large{\underline{\pmb{\frak{Perimeter\:of\:Rectangle}}}}}

\bigstar{\underline{\boxed{\sf{Perimeter_{\:rectangle}=\red {2(l+b)}}}}}

Here

  • s=side
  • l=length
  • b=breadth

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

{\quad{\Large{\underline{\underline{\blue{\bf{Solution}}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\large{\underline{\pmb{\frak{Calculating\:Perimeter}}}}}

{\qquad{\qquad\:\:\:{\longmapsto{\sf{Perimeter_{\:square}=4s}}}}}

{\qquad{\qquad\:{\longmapsto{\sf{Perimeter=4 \times 13}}}}}

{\qquad{\qquad\:{\longmapsto{\sf{Perimeter=\green{52\:meters}}}}}}

  • Perimeter of square=Perimeter of rectangle
  • {\therefore}Perimeter of rectangle=52 metres.

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\large{\underline{\pmb{\frak{Calculating\:Breadth}}}}}

{\qquad{\qquad{\longmapsto{\sf{Perimeter_{\:rectangle}=2(l+b)}}}}}

{\qquad{\qquad{\longmapsto{\sf{52=2(16+b)}}}}}

{\qquad{\quad{\longmapsto{\sf{\dfrac{52}{2}=16+b}}}}}

{\qquad{\quad\:{\longmapsto{\sf{26=16+b}}}}}

{\qquad{\quad{\longmapsto{\sf{b=26-16}}}}}

{\qquad{\quad{\longmapsto{\sf{breadth=\green{10\:meters}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

~Therefore

  • Breadth of given rectangle is 10 metres

\begin{gathered} \\ {\underline{\rule{200pt}{7pt}}} \end{gathered}

Attachments:
Similar questions