Math, asked by nivasbharath7528, 1 year ago

The perimeter of a rhombus ABCD is 40 cm . Find the area of rhombus of its diagonals BD measures 12 cm. By herons formula

Answers

Answered by BrainlyConqueror0901
76

Answer:

\huge{\pink{\boxed{\green{\sf{AREA=96cm^{2}}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\orange{given}} \\ { \pink{ \boxed{ \green{perimeter = 40cm}}}} \\ { \pink{ \boxed{ \green{d1 = 12cm}}}} \\  \\ \:  \:  \:  \:  \:  \:  \:  \: { \blue{to \: find}} \\ { \purple{ \boxed{ \red{area  \: of \: rhombus=? }}}}

According to given question:

 \to perimeter \: of \: rhombus = 4 \times side \\  \to 40 = 4 \times side \\  \to side =  \frac{40}{4}  \\ {  \boxed{\to side = 10cm }}\\  \\  \to {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \to  {10}^{2}  =  {p}^{2}  +  {6}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \: (according \: to \: rhombus \: property) \\  \to 100 =  {p}^{2}  + 36   \\ \to 100 - 36 =  {p}^{2}  \\ \to  {p}^{2}  = 64  \\  \to     {p} =    \sqrt{64}  \\  { \boxed{\to  p = 8cm}} \\  \\ \to d2 = 2 \times p \\   \to d2 = 2 \times 8 \\ { \boxed{\to d2 = 16cm}} \\

We find diagonal 1 and diagonal 2 so we find area :

 \to area \: of \: rhombus =  \frac{1}{2}  \times d1 \times d2 \\  \to area =  \frac{1}{2} \times 12 \times 16 \\  { \pink{ \boxed{ \green{\therefore area = 9 6 {cm}^{2} }}}}

_________________________________________

Answered by tintin15551
0

Answer:

pls mark it as brainliest

Step-by-step explanation:

Given,

Diagonal BD of rhombus = 12cm

Perimeter of rhombus = 40cm

4s = 40

s = 40/4

s = 10cm

Now,

Divide the rhombus into four right angled triangles.

Such that, every triangle has a hypotrneuse of 10cm

12/2 = 6cm

Using pythagorus therom :

= √10² - 6²

= 8cm

Now,

8+8= 16cm (sum of the bases of two triangles = measure of d1)

Area of rhombus = 1/2 × d1 × d2

= 1/2 × 16 × 12

= 96cm²

Therefore, diagonal AC = 16cm and the area of rhombus = 96cm²

Similar questions