Math, asked by kbajpeyi115, 1 month ago

The perimeter of a square field is (4x+8) Find the length of its diagonal. (a) (x + 673 (b) (x + 4) 2 (x + 2)2 (d) (x + 5173​

Answers

Answered by GauthmathMagnus
1

Answer:

Step-by-step explanation:

if perimeter = 4x+8

so 4a= 4x+8

a= x+2 where a is the side

hence diagonal of the square with side x+2 will be

(x+2) root2

Answered by ⱮøøɳƇⲅυѕɦεⲅ
7

Given

  • Perimeter of a square field is (4x+8).

To Find

  • Length of its diagonal

Using Formula

\begin{gathered} {\underline{\boxed{ \rm {\purple{Diagonal  \:  \: of   \: \: square \:  =  \:  \sqrt{2 \: a} }}}}}\end{gathered}

\begin{gathered} {\underline{\boxed{ \rm {\blue{Perimeter = 4a }}}}}\end{gathered}

Solution

If square has a side a , we know that

  • Perimeter = 4a

 \bf \longrightarrow \:  \: (4x+8) \:  =  \: 4a

\bf \longrightarrow \:  \:  \frac{(4x+8)}{4}  \:  =  \: a \\

\bf \longrightarrow \:  \:  \frac{( \cancel4x+ \cancel8  \: ^{2} )}{ \cancel4}  \:  =  \: a \\

\bf \longrightarrow \:  \: a \:  =  \: (x + 2)

Therefore , the side of square field is (x+2).

Now , we have to find length of the diagonal.

\begin{gathered} {\underline{\boxed{ \rm {\red{Diagonal  \:  \: of   \: \: square \:  =  \:  \sqrt{2 \: a} }}}}}\end{gathered}

Substuting the values

 \bf \longrightarrow \:  \: Diagonal  \:  \: of   \: \: square \:  =  \:  \sqrt{2 \: (x + 2)}

Similar questions