Math, asked by sajithsreerag, 11 months ago

the perimeter of a trapezium is 116m,it's non parallel sides are 16m and 24m and it's altitude is 16m. find the area of the trapezium.​

Answers

Answered by StarrySoul
135

Given :

• Perimeter of the Trapezium = 116 m

• Non-Parallel Sides = 16 m and 24 m

• Altitude = 16 m

To Find :

• Area of the Trapezium

Solution :

Let the parallel sides be a and b

 \bigstar\boxed{ \purple{ \sf \: Perimeter  \: = Sum  \: of  \: all \:  sides }}

 \longrightarrow \sf \: 116 = 16 + 24 + a + b

 \longrightarrow \sf \: 116 = 40 + a + b

 \longrightarrow \sf \:a + b = 116 - 40

 \longrightarrow \sf \:a + b = 76

Hence,Sum of Parallel Sides = 76 m

Now, Let's Find Area of the Trapezium :

 \bigstar\boxed{ \purple{ \sf \:  Area  \: of  \: Trapezium  =  \dfrac{1}{2} (a + b) \times h}}

 \longrightarrow \sf \:  \dfrac{1}{2} (76) \times 16

 \longrightarrow \sf \:  \dfrac{1}{2}  \times 76 \times 16

 \longrightarrow \sf \cancel \dfrac{1216}{2}

 \longrightarrow \sf \red{  {608 \: m}^{2} }

Hence,Area of the Trapezium is 608 m^2

Attachments:

Haezel: great answer
StarrySoul: Thank you so much Ma'am! :D
Answered by Anonymous
83

Given :

  • The perimeter of a trapezium is 116 m
  • It's non parallel sides are 16 m and 24 m.
  • Altitude = 16 m.

To Find :

  • Area of the trapezium.

Solution :

Perimeter as we know is the sum of all sides.

We have, perimeter = 116 m.

Let the two parallel sides be x and y.

- One non parallel side = 16 m

-Other non parallel side = 24 m

-Altitude of the trapezium 16 m

\longrightarrow \sf{116\:=x+y+16+24}

\longrightarrow \sf{116=x+y+30}

\longrightarrow \sf{116-30=x+y}

\longrightarrow \sf{76=x+y \:\:....(i)}

x and y are the parallel sides of the trapezium.

And from equation (i), we have sum of x and y equals as 76.

Which gives us the quantity sum of parallel sides in the formula of area of trapezium.

Let's use the formula of area of trapezium

\large{\boxed{\sf{\purple{Area\:of\:trapezium\:=\:\dfrac{1}{2}\:\times\:(sum\:of\:parallel\:sides)\:\times\:height}}}}

Block in the data,

\longrightarrow \sf{Area\:=\:\dfrac{1}{2}\:\times\:(76)\:\times\:16}

\longrightarrow \sf{Area\:=\:\dfrac{76\:\times\:16}{2}}

\longrightarrow \sf{Area\:=\:\dfrac{1216}{2}}

\longrightarrow \sf{Area\:=\:608}

\large{\boxed{\sf{\red{Area\:of\:trapezium\:=\:608\:m^2}}}}


Haezel: very good explanation
Similar questions