Math, asked by naveensrichakra2125, 11 months ago

The perimeter of a triangle field is 240m .If two sides are 78 m and 50m.Find length of altitude the side of altitude the side of 50m from its opposite vertex.

Answers

Answered by CuteGenius47
10

ANSWER:-

GIVEN:

__________

The perimeter of the triangle ABC is 240m.

The length of the two sides are 78m and 50m

TO FIND:

____________

  1. The length of the side
  2. the length of the altitude

SOLUTION:-

_______________

In the above figure,AB=78m

BC=50m

The perimeter of the triangle is=AB+BC+AC

=>240m=(78+50)m+AC

=>AC=240m - 128m

=>AC=112cm

angle ADB =90°(altitude)

so,AD=[(AB)^2+(BD)^2]

BD=BC/2=50m/2=25m

AD=(78^2+25^2)

=(6084+625)

=81.9m

hope it will help you friend

-----××GAME CHANGER××------

Attachments:
Answered by silentlover45
11

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

\underline\mathfrak{Given:-}

  • Perimeter of triangular field ⇢ 240 m.

  • Length of two sides ⇢ 78 m and 50 m.

\underline\mathfrak{Solutions:-}

  • Perimeter of triangular field ⇢ 240 m.

\: \: \: \: \: \pink{\star \: \: \: Perimeter \: \: of \: \: triangle \: \: \leadsto \: \: sum \: \: of \: \: all \: \: sides.}

  • \: \: \: \: \: Let \: \: the \: \: third \: \: side \: \: be \: \: x

\: \: \: \: \: \leadsto \: \: {240} \: \: = \: \: {78} \: + \: {50} \: + \: x

\: \: \: \: \: \leadsto \: \: 240 \: \: = \: \: 128 \: + \: x

\: \: \: \: \: \leadsto \: \: {240} \: -  \: {128} \: \: = \: \: x

\: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: {112}

✰ So, the third side is 112 m.

\: \: \: \: \: \pink{\star \: \: \: Area \: \: of \: \: triangle \: \: by \: \: heroes's \: \: formula:-}

\: \: \: \: \: \orange{\therefore \sqrt{s \: (s \: - \: a) \: (s \: - \: b) \: (s \: - \: c)}}

\: \: \: \: \: \star \: \: S \: \: = \: \: \frac{a \: + \: b \: + \: c}{2}

  • a ⇢ 50

  • b ⇢ 78

  • c ⇢ 112

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{{50} \: + \: {78} \: + \: {112}}{2}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{240}{2}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: {120}

\: \: \: \: \: \pink{\star \: \: \: Area \: \: of \: \: triangular \: \: field:-}

\: \: \: \: \: \leadsto \: \: \sqrt{{120} \: ({120} \: - \: {50}) \: ({120} \: - \: {78}) \: ({120} \: - \: {112})}

\: \: \: \: \: \leadsto \: \: \sqrt{{120} \: \times \: {70} \:  \times \: {42} \: \times  \: {8}}

\: \: \: \: \: \leadsto \: \: \sqrt{2,822,400}

\: \: \: \: \: \leadsto \: \: {1680} \: {m}^{2}

\: \: \: \: \: \pink{\star \: \: \: Area \: \: of \: \: triangle \: \: \leadsto \: \: \frac{1}{2} \: \times \: base \: \times \: height.}

✰ Let the height be h m.

  • \: \: \: \: \: Area \: \: of \: \: triangle \: \: = \: \: \frac{1}{2} \: \times \: {50} \: \times \: h.

\: \: \: \: \: \leadsto \: \: {1680} \: \: = \: \: \frac{1}{2} \: \times \: {50} \: \times \: h.

\: \: \: \: \: \leadsto \: \: {1680} \: \: = \: \: {25} \: \times \: h.

\: \: \: \: \: \leadsto \: \: h \: \: = \: \: \frac{1680}{25}

\: \: \: \: \: \leadsto \: \: h \: \: = \: \: {67.2}

\: \: \: \: \: \pink{\star \: \: \: So, \: \: the \: \: length \: \: of \: \: altitude \: \: {67.2m}}

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

Similar questions