The perimeter of a triangle is 300m. If its sides are in the ratio 3:5:7 find its area by using herons formula ??
Answers
Answered by
117
Let triangle ABC
AB= 3x ; BC= 5x ; AC= 7x
Perimeter= 300m
AB+BC+AC= 300
3x+5x+7x= 300
15x= 300
x= 300/15= 20
∵AB= 3x= 3(20)= 60m
BC= 5x= 5(20)= 100m
AC= 7x= 7(20)= 140m
S= a+b+c/2= 300/2= 150
Area= √s(s-a)(s-b)(s-c)
√150(150-60)(150-100)(150-140)
√150*90*50*10
√2*3*5*5*2*3*3*5*2*5*5*2*5
2*2*3*5*5*5*√3
1500√3 m²
AB= 3x ; BC= 5x ; AC= 7x
Perimeter= 300m
AB+BC+AC= 300
3x+5x+7x= 300
15x= 300
x= 300/15= 20
∵AB= 3x= 3(20)= 60m
BC= 5x= 5(20)= 100m
AC= 7x= 7(20)= 140m
S= a+b+c/2= 300/2= 150
Area= √s(s-a)(s-b)(s-c)
√150(150-60)(150-100)(150-140)
√150*90*50*10
√2*3*5*5*2*3*3*5*2*5*5*2*5
2*2*3*5*5*5*√3
1500√3 m²
Answered by
29
GiveN :-
- Sides of triangle are in ratio of 3:5:7
- Perimeter of triangle is 150 m
To FinD :-
- Area of the triangle
SolutioN :-
Let, Sides of triangle be 3x, 5x and 7x
So, Sides are :
- 3x = 3×20 = 60 m
- 5x = 5×20 = 100 m
- 7x = 7×20 = 140 m
Now, Semi-perimeter of the triangle
Area of the triangle :
Similar questions
Accountancy,
8 months ago
Computer Science,
8 months ago
Math,
8 months ago
English,
1 year ago
Computer Science,
1 year ago
Computer Science,
1 year ago