Math, asked by tishasiddhi, 4 months ago

The perimeter of a triangle whose
sides are in the ratio 3:4:5 is 24 cm.
What is the area of this triangle?​

Answers

Answered by sanjoo12789
0

Answer:

28.8

Step-by-step explanation:

Given, Side of triangle are in ratio 3:4:5 and their perimeter 144 cm

Let the sides of triangle be 3x,4x,5x

Perimeter 3x+4x+5x= 144 cm

12x=144

∴x=12

Then sides of triangle are 3x= 3×12= 36 cm,

                                            4x= 4×12= 48 cm,

                                            5x= 5×12= 60 cm.

Now,Semi perimeter, s=2Sumofsidesoftriangle

                                       =236+48+60=72cm

Using heron's formula, Area of triangle=s(s−a)(s−b)(s−c)

                                                               =72(72−36)(72−48)(72−60)

                                                                =72×36×24×12=864cm2

Using altitude, area of triangle=21× base × altitude =864cm2

                                                  =21×60× altitude =864

∴ altitude =60864×2=

Answered by AdhKrisBro
1

Answer:

Step-by-step explanation:

Let the ratios be x

First side = 3x and the other two sides are 4x and 5x respectively

now , perimeter of triangle is the sum of the sides

therefore , 3x + 4x + 5x = 24cm (given perimeter)

12x = 24 cm

x = 2 cm

therefore

first side = 6 cm

2nd side = 8 cm

3rd side = 10 cm

Now , Area of triangle by heron's formula =

√ [s (s – a) (s – b) (s – c)]

S = 24 cm /2 = 12 cm

Therefore , Area =

√[ 12(12-6)(12-8)(12-10)]

√[12 x 6 x 4 x 2]

√[576] = 24cm^2

Similar questions