Math, asked by rakendhuhc, 2 months ago

The perimeter of a triangular field is 120 m and the sides are in the ratio of 25::15::20. find its area​

Answers

Answered by Yuseong
44

Answer :

600 m²

____________

As per the provided information in the given question, we have :

  • Perimeter of the triangular field = 120 m
  • Sides are in the ratio of 25:15:20

We are asked to calculate,

  • Area of the field.

In order to calculate the area of triangle. We need to find its side.

Finding the sides of the field :

Let us assume the sides of the field as 25x, 15x and 20x.

Now, as we know that,

 \longmapsto \bf {Perimeter_{(\Delta)} = Sum_{(All \; sides)} } \\

According to the question,

 \longmapsto \rm { 120 = 25x + 15x + 20x}\\

Performing addition in R.H.S.

 \longmapsto \rm { 120 =  60x}\\

Transposing 60 from R.H.S to L.H.S. Its arithmetic operator will get changed.

 \longmapsto \rm { \cancel{\dfrac{120}{60}} = x}\\

 \longmapsto \rm { 2 = x}\\

So, the sides are :

First side :

 \longmapsto \rm { 1st \; side = 25x \; m} \\

Substituting the value of x.

 \longmapsto \rm { 1st \; side = 25(2) \; m} \\

Performing multiplication.

 \longmapsto \bf { 1st \; side = 50 \; m} \\

Second side :

 \longmapsto \rm { 2nd \; side = 15x \; m} \\

Substituting the value of x.

 \longmapsto \rm {2nd \; side = 15(2) \; m} \\

Performing multiplication.

 \longmapsto \bf { 2nd \; side = 30 \; m} \\

Third side :

 \longmapsto \rm { 3rd \; side = 20x \; m} \\

Substituting the value of x.

 \longmapsto \rm {3rd \; side = 20(2) \; m} \\

Performing multiplication.

 \longmapsto \bf { 3rd \; side = 40 \; m} \\

Now, finding the area of the field.

By using Heron's formula,

 \bigstar \; \underline{\boxed{\bf Area_{(\Delta)} = \sqrt{s(s -a)(s -b)(s -c)} }}\\

  • a,b,c are sides
  • s is Semi-perimeter

Finding Semi-perimeter :

 \longmapsto \rm {s = \dfrac{Perimeter}{2} }

Substituting the value of Perimeter.

 \longmapsto \rm {s = \dfrac{120}{2} m}

Dividing 120 with 2.

 \longmapsto \bf {s = 60 \; m}

Substituting all the value in the formula :-

 \longmapsto \rm{Area_{(\Delta)} = \sqrt{s(s -a)(s -b)(s -c)}} \\

 \longmapsto \rm{Area_{(\Delta)} = \sqrt{60(60-50)(60 -30)(60 -40)}\; m^2} \\

Performing subtraction in the brackets.

 \longmapsto \rm{Area_{(\Delta)} = \sqrt{60(10)(30)(20)}\; m^2} \\

 \longmapsto \rm{Area_{(\Delta)} = \sqrt{360000}\; m^2} \\

 \longmapsto \rm{Area_{(\Delta)} = \sqrt{6 \times 6 \times 10 \times 10 \times 10 \times 10 }\; m^2} \\

 \longmapsto \rm{Area_{(\Delta)} = 6 \times 10 \times 10 \; m^2} \\

 \longmapsto \bf{Area_{(\Delta)} = 600 \; m^2} \\

∴ Area of the field is 600 m².

Answered by CuteBunny21
60

Answer:

\huge\mathcal{\fcolorbox{aqua}{azure}{\red{✿Question ♡❖}}}

The perimeter of a triangular field is 120 m and the sides are in the ratio of 25::15::20. find its area

\huge\mathcal{\fcolorbox{aqua}{azure}{\red{✿Yøur-Answer♡❖}}}

The perimeter of a triangular field =120m

Let the side =25x,15x,20x

Perimeter of a triangle =Sum of three side

25x + 15x + 20x = 120 \\ 60x =\begin{gathered}  \rm { \cancel{\dfrac{120}{60}} = x}\\ \end{gathered}⟼=x = 2

1st side (a)=25×2=50m

2nd side(b)=15×2=30m

3rd side (c)=20×2=40

Semi--perimeter(S)=

\begin{gathered} \longmapsto \rm { {\dfrac{a+b+c}{2}} }\\ \end{gathered}

\begin{gathered} \longmapsto \rm { {\dfrac{(50+30+40)}{2}} = }\\ \end{gathered}\begin{gathered} \longmapsto \rm { \cancel{\dfrac{120}{2}} = 60m}\\ \end{gathered}

Area of the triangle =

  \sqrt{S}(s - a)(s - b)(s - c)

[By Heron's Formula]

★Area(Δ)=s(s−50)(s−30)(s−40)

 \sqrt{60 = (60 - 50)(60 - 30(60 - 40} \\  \sqrt{60 \times 10 \times 30 \times 20}  \\  = 360000 \\

★Area  \:  \: of  \:  \: (Δ)=600m {}^{2}

600m {}^{2}

⟹ \large\bf{\underline{\red{VERIFIED✔}}}

\bf\colorbox{lavender}{{\color{b}{✿Hope It Helps You ♡❖ }}}

{\sf{\mathcal{\red{@ᴄᴜᴛᴇʙᴜɴɴʏ21࿐}}}}

Similar questions