Math, asked by vikashnishad1878, 1 year ago

The perimeter of a triangular field is 240m its two side are 78mand50 m.Find the lengthof the altitude on the side of 50 m from its opposite vertex

Answers

Answered by shreybarh16
0

Answer:


Step-by-step explanation:

By using perimeter we find the third side. And the area of triangle is 1/2*b*h and by using this formula we find the altitude

Answered by silentlover45
0

\underline\mathfrak{Given:-}

  • \: \: \: \: \: Perimeter \: \: of \: \: triangular \: \: field \: \: = \: \: 240 \: m.

  • \: \: \: \: \: Length \: \: of \: \: of \: \: two \: \: sides = \: \: 78 \: m \: \: and \: \: 50 \: m.

\huge\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: Perimeter \: \: of \: \: triangular \: \: field \: \: = \: \: 240 \: m.

  • \: \: \: \: \: Perimeter \: \: of \: \: triangle \: \: = \: \: sum \: \: of \: \: all \: \: sides.

  • \: \: \: \: \: Let \: \: the \: \: third \: \: side \: \: be \: \: x

\: \: \: \: \: \leadsto 240 \: \: = \: \: 78 \: + \: 50 \: + \: x

\: \: \: \: \: \leadsto 240 \: \: = \: \: 128 \: + \: x

\: \: \: \: \: \leadsto 240 \: -  \: 128 \: \: = \: \: x

\: \: \: \: \: \leadsto 112 \: \: = \: \: x

\underline{So, \: \: the \: \: third \: \: side \: \: is \: \: 112 \: m.}

\underline{Area \: \: of \: \: triangle \: \: by \: \: heroes's \: \: formula:-}

\: \: \: \: \: \leadsto \sqrt{s \: (s \: - \: a) \: (s \: - \: b) \: (s \: - \: c)}

\: \: \: \: \: \leadsto S \: \: = \: \: \frac{a \: + \: b \: + \: c}{2}

  • \: \: \: \: \: a \: \: = \: \: 50

  • \: \: \: \: \: b \: \: = \: \: 78

  • \: \: \: \: \: c \: \: = \: \: 112

\: \: \: \: \: \leadsto S \: \: = \: \: \frac{50 \: + \: 78 \: + \: 112}{2}

\: \: \: \: \: \leadsto S \: \: = \: \: \frac{240}{2}

\: \: \: \: \: \leadsto S \: \: = \: \: {120}

\underline{\: \: \: \: \: Area \: \: of \: \: triangular \: \: field:-}

\: \: \: \: \: \leadsto \sqrt{120 \: (120 \: - \: 50) \: (120 \: - \: 78) \: (120 \: - \: 112)}

\: \: \: \: \: \leadsto \sqrt{120 \: ×  \: 70 \:  × \: 42 \: ×  \: 8}

\: \: \: \: \: \leadsto \sqrt{2,822,400}

\: \: \: \: \: \leadsto {1680} \: {m}^{2}

\: \: \: \: \: \fbox{Area \: \: of \: \: triangle \: \: = \: \: \frac{1}{2} \: × \: base \: × \: height.}

  • \: \: \: \: \: Let \: \: the \: \: height \: \: be \: \: h \: m.

\: \: \: \: \: Area \: \: of \: \: triangle \: \: = \: \: \frac{1}{2} \: × \: 50 \: × \: h.

\: \: \: \: \: \leadsto 1680 \: \: = \: \: \frac{1}{2} \: × \: 50 \: × \: h.

\: \: \: \: \: \leadsto 1680 \: \: = \: \: 25 \: × \: h.

\: \: \: \: \: \leadsto h \: \: = \: \: \frac{1680}{25}

\: \: \: \: \: \leadsto h \: \: = \: \: {67.2}

\underline{\: \: \: \: \: So, \: \: the \: \: length \: \: of \: \: altitude \: \: 67.2 \: m</p><p>}

______________________________________

Similar questions