Math, asked by shwetadhirendrasingh, 1 month ago

the perimeter of a triangular field is 450m and its sides are inthe ratio 13 :12:5find the area of triangle​

Answers

Answered by Anonymous
54

Answer

  • Area of triangle = 6750 m².

Given

  • The perimeter of a triangular field is 450m and its sides are in the ratio 13 : 12 : 5.

To Find

  • The area of the triangle.

Step By Step Explanation

Given that the perimeter of a triangular field is 450m and its sides are in the ratio 13 : 12 : 5.

We need to find the area.

Let's do it !!

First we need to find the unknown sides.

Let the sides be 13x, 12x and 5x.

Equation

13x + 12x + 5x = 450

30x = 450

x = 450/30

x = 15

Length of sides

13x = 13 × 15 = 195

12x = 12 × 15 = 180

5x = 5 × 15 = 75

Now, Area

By using Herons formula

\dag\underline{\boxed{\mathfrak{\pink{s = \cfrac{a + b + c}{2}}}}}

\dag\underline{\boxed{\mathfrak{\sqrt{{\red{(s) \times (s - a)(s - b)(s - c)}}}}}}

By substituting the values

\longmapsto\tt{s=\cfrac{195+180+75}{2}}\\\\\longmapsto\tt{s=\cancel\cfrac{450}{2} } \\  \\\longmapsto\tt{s = 225}

Now

\tt \sqrt{225 \times (225 - 195) (225 - 180) (225 - 75)}  \\  \\\longmapsto\tt \sqrt{225\times30\times45\times150}\\\\\longmapsto\tt\sqrt{45562500}  \\\\\longmapsto\bf{\green {Area_{(Triangle)} = 6750 {m}^{2}}}

Therefore, Area of triangle = 6750m²

_____________________

Answered by Anonymous
114

Answer:

{\large{\pmb{\underline{\underline{\frak\color{purple}{Given...}}}}}}

  • \dashrightarrow Perimeter of a triangular field = 450 m
  • \dashrightarrow Sides of triangle in the ratio = 13:12:5

\begin{gathered}\end{gathered}

{\large{\pmb{\underline{\underline{\frak{\color{purple}{To \: Find...}}}}}}}

  • \dashrightarrow Area of Triangle

\begin{gathered}\end{gathered}

{\large{\pmb{\underline{\underline{\frak{\color{purple}{Using \: Formulae ...}}}}}}}

\green\bigstar Semi Perimeter of Triangle

\dag{\underline{\boxed{\sf{\red{Semi \:  Perimeter = \dfrac{a + b + c}{2}}}}}}

\green\bigstar Area of Triangle by herom Formula

\dag{\underline{\boxed{\sf{\red{Area  \: of \:  Triangle = {\sqrt{s(s  -  a)(s  -  b)(s  -  c)}}}}}}}

\begin{gathered}\end{gathered}

{\large{\pmb{\underline{\underline{\frak{\color{purple}{Solution...}}}}}}}

\ddag \:  \: {\underline{\frak{\blue{Let  \: the  \: sides \:  of  \: triangle ..}}}}

  • 13x
  • 12x
  • 5x

\begin{gathered}\end{gathered}

\ddag \:  \: {\underline{\frak{\blue{According \:  to \:  the \:  question..}}}}

 \begin{gathered} \dashrightarrow{\sf{13x + 12x + 5x = 450 \: m}} \\\\\dashrightarrow{\sf{30x = 450 \: m}} \\  \\\dashrightarrow{\sf{x =  \frac{450}{30}}}  \\  \\ \dashrightarrow{\sf{x=\cancel{\frac{450}{30}}}} \\  \\ \dashrightarrow{\sf{x = {15}}} \\  \\ \dag\underline{\boxed{\sf{\pink{x = {15}}}}} \end{gathered}

\begin{gathered}\end{gathered}

\ddag \:  \: {\underline{\frak{\blue{Thus,The\: Length \:  of \:  Sides \: are..}}}}

\dashrightarrow{\sf{13x = 13 \times 15 =  \bf\purple{195 \: m}}}

\dashrightarrow{\sf{12x = 12\times 15 =  \bf\purple{180\: m}}}

\dashrightarrow{\sf{5x = 5\times 15 =  \bf\purple{75\: m}}}

\begin{gathered}\end{gathered}

\ddag \:  \: {\underline{\frak{\blue{Finding \: the \: semi \: perimeter \: of \: Triangle..}}}}

\quad{ : \implies{\sf{Semi \: Perimeter = \bf{\dfrac{a + b + c}{2}}}}}

  • Substituting the values

\begin{gathered} \begin{gathered}\quad{ : \implies{\sf{Semi \: Perimeter = \bf{\dfrac{195 + 180 + 75}{2}}}}} \\ \\ { : \implies{\sf{Semi \: Perimeter = \bf{\dfrac{450}{2}}}}} \\ \\ \qquad{ : \implies{\sf{Semi \: Perimeter = \bf{\cancel{\dfrac{450}{2}}}}}} \\ \\ \qquad{: \implies{\sf{Semi \: Perimeter = \bf{225}}}} \\ \\ \qquad{\dag{\underline{\boxed{\sf{\pink{Semi \: Perimeter = {225}}}}}}}\end{gathered}\end{gathered}

\begin{gathered}\end{gathered}

\ddag \:  \: {\underline{\frak{\blue{Now \: finding \: the \: area \: of \: Triangle..}}}}

\quad{: \implies{\sf{Area \: of \: Triangle = \bf{\sqrt{s(s - a)(s - b)(s - c)}}}}}

  • Substituting the values

\begin{gathered}\begin{gathered}{: \implies{\sf{Area \: of \: \triangle = \bf{\sqrt{225(225 - 195)(225- 180)(225 - 75)}}}}} \\ \\{: \implies{\sf{Area \: of \: \triangle = \bf{\sqrt{225(30)(45)(150)}}}}} \\ \\ \quad\qquad{: \implies{\sf{Area \: of \: \triangle = \bf{\sqrt{225 \times 30 \times 45 \times 150}}}}} \\ \\ \quad{: \implies{\sf{Area \: of \: \triangle = \bf{\sqrt{45562500}}}}} \\ \\ \qquad\qquad{: \implies{\sf{Area \: of \: \triangle = \bf{\sqrt{6750 \times 6750}}}}} \\ \\ \qquad{: \implies{\sf{Area \: of \: \triangle = \bf{6750 \: {m}^{2}}}}} \\ \\ { \dag{\underline{\boxed{\sf{\pink{Area \: of \: Triangle = {6750 \: {m}^{2}}}}}}}}\end{gathered}\end{gathered}

{\therefore{\underline{\underline{\sf{\red{The \: Area \: of \: Triangle \: is \: 6750 \: {m}^{2} .}}}}}}

\begin{gathered}\end{gathered}

{\large{\pmb{\underline{\underline{\frak\color{purple}{Learn \: More...}}}}}}

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

Similar questions